Have a personal or library account? Click to login
Neutronic Investigation on Thorium Mox Fuel in Vver-1000 Reactor Assembly Cover

Neutronic Investigation on Thorium Mox Fuel in Vver-1000 Reactor Assembly

Open Access
|May 2024

References

  1. Lentzos, I. (2016). Molten Salt Fast Reactor: Shift from Burner to Breeder Moving on to the Thorium Era. Master Thesis. Delft University of Technology.
  2. Bijman, R. (2014). Radiotoxicity and Decay Heat Comparison of Nuclear Waste Produced by a Thorium or Uranium Fuelled Pebble Bed Reactor. Bachelor Thesis. Delft University of Technology.
  3. Arthur, E. (2002). Motivation and Programs for Transmutation of Nuclear Waste. Lecture Notes: The 2002 Frederic Joliot-Otto Hahn Summer School, Cadarache, France.
  4. Meshesha, A.Z. (2007). Viability of Thorium-Based Reactors. Master Thesis. Department of Physics - University of Surrey.
  5. Nuclear Science. (2015). Perspectives on the Use of Thorium in the Nuclear Fuel Cycle. OECD NEA No. 7228.
  6. Bjӧrk, K.I., & Fhager, V. (2009). Comparison of Thorium-Plutonium fuel and MOX fuel for PWRs. In Proceedings of Global 2009, 6–11 September 2009. Paris, France.
  7. Bjӧrk, K.I. (2013). A BWR Fuel Assembly Design for Efficient Use of Plutonium in Thorium-Plutonium Fuel. Progress in Nuclear Energy, 65, 56–63.
  8. Bjӧrk, K.I. (2014). Development of a fuel performance code for Thorium-Plutonium fuel. In Proceedings of PHYSOR2014, 28 September–3 October 2014. Kyoto, Japan.
  9. Lau, C.H., Nylén, H., Björk, K.I., & Sandberg, U. (2014). Feasibility Study of 1/3 Thorium-Plutonium Mixed Oxide Core. Science and Technology of Nuclear Installations, 2014, Article ID 709415. DOI: 10.1155/2014/709415
  10. Björk, K.I., Lau, C.W., Nylén, H., & Sandberg, U. (2013). Study of Thorium-Plutonium Fuel for Possible Operating Cycle Extension in PWRs. Science Technology of Nuclear Installations, Article ID 867561.
  11. Fridman, E., & Kliem, S. (2011). Pu Recycling in a Full Th-MOX PWR Core. Part I: Steady State Analysis. Nuclear Engineering and Design, 241 (1), 193–202.
  12. NEA/NSCDOC 10. (2002). A VVER-1000 LEU and MOX assembly computational Benchmark. OECD NEA.
  13. Goorley, J.T., James, M.R., Booth, T.E., Brown, F.B., Bull, J.S., Cox, L.J., … & Anthony, J. (2013). Initial MCNP6 Release Overview – MCNP6 Version 1.0. LA-UR-13–22934. Los Alamos National Laboratory.
  14. Chadwick, M.B., Herman, M., Obložinský, P., Dunn, M.E., Danon, Y., Kahler, A.C., … & Young, P.G. (2011). ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, 112 (12), 2887–2996. DOI: 10.1016/j.nds.2011.11.002
  15. Tran, V.T., Tran, H.N., Nguyen, H.T., Hoang, V.K., & Ha, P.N.V. (2019). Study on Transmutation of Minor Actinides as Burnable Poison in VVER-1000 Fuel Assembly. Science and Technology of Nuclear Installations, 2019, Article ID 5769147. DOI: 10.1155/2019/5769147
  16. X-5 Monte Carlo Team (2003). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987.
  17. Hendricks, J.S, McKinney, G.W., Fensin, M.L., James, M.R., Johns, R.C., Durkee, J. W., … & Johnson, M. W. (2008). MCNPX 2.6.0 Extensions. LA- UR-08-2216. Los Alamos National Laboratory.
  18. Zuhair, Z., Dwijayanto, R.A.P., Sriyono, S., Suwoto, S., & Su’ud, Z. (2022). Preliminary Study on TRU Transmutation inVVER-1000 Fuel Assembly using MCNP6. Kerntechnik, 87 (3), 305–315. DOI: 10.1515/kern-2021-1017
  19. Hassan, M. (2020). Simulation of a Full PWR Core with MCNP6. International Journal of Science and Research (IJSR), 9, 913–918. DOI: 10.21275/SR20916224433
  20. Zuhair, Z., Dwijayanto, R.A.P., Suwoto, S., & Setiadipura, T. (2021). The Implication of Thorium Fraction on Neutronic Parameters of Pebble Bed Reactor. Kuwait Journal of Science, 48, 1–16, DOI: 10.48129/kjs. v48i3.9984
  21. Facchini, A., Giusti, V., Ciolini, R., Tuček, K., Thomas, D., & D’Agata, E. (2017). Detailed Neutronic Study of the Power Evolution for the European Sodium Fast Reactor during a Positive Insertion of Reactivity. Nuclear Engineering and Design 313, 1–9. DOI: 10.1016/j. nucengdes.2016.11.014
  22. Zuhair, Z., Suwoto, S., Setiadipura, T., & Su’ud, Z. (2020). Study on MCNP6 Model in the Calculation of Kinetic Parameters for Pebble Bed Reactor. Acta Polytechnica, 60, 175–184. DOI: 10.14311/AP.2020.60.0175
  23. Carter, J.P., & Borrelli, R.A. (2020). Integral Molten Salt Reactor Neutron Physics Study using Monte Carlo N-Particle Code. Nuclear Engineering and Design, 365, 110718. DOI: 10.1016/j.nucengdes.2020.110718
  24. Zuhair, Z., Suwoto, S., Setiadipura, T., & Kuijper, J.C. (2019). Study on the Characteristics of Effective Delayed Neutron Fraction (βeff) for Pebble-Bed Reactor with Plutonium Fuel. Iranian Journal of Science and Technology, Transactions A: Science, 43, 3037–3045. DOI: 10.1007/s40995-019-00772-8.
  25. Liem, P.H., Zuhair, Z., & Hartanto, D. (2019). Sensitivity and Uncertainty Analysis on the First Core Criticality of the RSG GAS Multipurpose Research Reactor. Progress in Nuclear Energy, 114, 46–60. DOI: 10.1016/j.pnucene.2019.03.001
  26. Zuhair, Z., Suwoto, S., Setiadipura, T., & Kuijper, J.C. (2019). The Effects of Fuel Type on Control Rod Reactivity of Pebble-Bed Reactor. Nukleonika, 64, 131–138. DOI: 10.2478/nuka-2019-0017
  27. Kabach, O., Chetaine, A., Benchrif, A., Amsil, H., & El Banni, F. (2021). A Comparative Analysis of the Neutronic Performance of Thorium Mixed with Uranium or Plutonium in a High-temperature Pebble-bed Reactor. International Journal of Energy Research, 1–18. DOI: 10.1002/er.6935.
  28. Zuhair, Z., Suwoto, S., Setiadipura, T., & Su’ud, Z. (2017). The Effects of Applying Silicon Carbide Coating on Core Reactivity of Pebble-bed HTR in Water Ingress Accident. Kerntechnik, 82 (1), 92–97. DOI:10.3139/124.110628.
  29. Zuhair, Z., Suwoto, S., Permana, S., & Setiadipura, T. (2021). Study on Control Rod Reactivity of Small Pebble Bed Reactor with Wallpaper Fuel Design. Journal of Physics: Conference Series, 1772 (1), 012021. DOI: 10.1088/1742-6596/1772/1/012021
  30. Mercatali, L., Venturini, A., Daeubler, M., & Sanchez, V.H. (2015). SCALE and SERPENT Solutions of the OECD VVER-1000 LEU and MOX Burnup Computational Benchmark. Annals of Nuclear Energy, 83, 328–341.
DOI: https://doi.org/10.2478/lpts-2024-0023 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 90 - 104
Published on: May 30, 2024
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 Zuhair, W. Luthfi, R.A.P. Dwijayanto, M.D. Isnaini, Suwoto, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.