Have a personal or library account? Click to login
Energy Performance of Higher Education Institutions Buildings Operating During Quarantine Restrictions and/or Martial Law in Ukraine Cover

Energy Performance of Higher Education Institutions Buildings Operating During Quarantine Restrictions and/or Martial Law in Ukraine

Open Access
|Mar 2024

References

  1. Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build, 152. DOI: 10.1016/j.enbuild.2017.07.038.
  2. Deshko, V., Bilous, I., Buyak, N., & Shevchenko, O. (2020). The impact of energy-efficient heating modes on human body exergy consumption in public buildings. In ESS 2020 – Proceedings. 12–14 May 2020, Kyiv, Ukraine. DOI: 10.1109/ESS50319.2020.9160270.
  3. Upitis, M., Amolina, I., Geipele, I., & Zeltins, N. (2020). Measures to Achieve the Energy Efficiency Improvement Targets in the Multi-Apartment Residential Sector. Latvian Journal of Physics and Technical Sciences, 57 (6), 41–52. DOI: 10.2478/lpts-2020-0032.
  4. Aliero, M. S., Pasha, M. F., Smith, D. T., Ghani, I., Asif, M., Jeong, S. R., & Samuel, M. (2022). Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques. Energies (Basel), 15 (23), 9231. DOI: 10.3390/en15239231.
  5. Saraiva, T. S., de Almeida, M., Bragança, L., & Barbosa, M. T. (2018). Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools. Sustainability (Switzerland), 10 (6), 1849. DOI: 10.3390/su10061849.
  6. Katić, D., Krstić, H., & Marenjak, S. (2021). Energy Performance of School Buildings by Construction Periods in Federation of Bosnia and Herzegovina. Buildings, 11 (2), 42. DOI: 10.3390/buildings11020042.
  7. He, Z., Hong, T., & Chou, S. K. (2021). A Framework for Estimating the Energy- Saving Potential of Occupant Behaviour Improvement. Appl. Energy, 287 (1), 116591. DOI: 10.1016/j.apenergy.2021.116591.
  8. Laaroussi, Y., Bahrar, M. Elmankibi, M., Draoui, A., & Si-Larbi, A. (2019). Occupant behaviour: A major issue for building energy performance. In IOP Conference Series: Materials Science and Engineering, 609, 072050. DOI: 10.1088/1757-899X/609/7/072050.
  9. Deshko, V., Bilous, I., & Boiko, T. (2022). Influence of Heating and Ventilation Modes on the Energy Consumption of University Educational Buildings under Quarantine Conditions in Ukraine. Journal of New Technologies in Environmental Science, 6 (1), 36–40.
  10. Alghamdi, S., Tang, W., Kanjanabootra, S., & Alterman, D. (2022). Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings, 12 (3), 329. DOI: 10.3390/buildings12030329.
  11. Sadowska, B., Piotrowska-Woroniak, J., Woroniak, G., & Sarosiek, W. (2022). Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies (Basel), 15 (8), 2886. DOI: 10.3390/en15082886.
  12. Jia, L. R., Han, J., Chen, X., Li, Q. Y., Lee, C. C., & Fung, Y. H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11 (12), 591. DOI: 10.3390/buildings11120591.
  13. Sun, C., & Zhai, Z. (2020). The Efficacy of Social Distance and Ventilation Effectiveness in Preventing COVID-19 Transmission. Sustain Cities Soc., 62. doi: 10.1016/j.scs.2020.102390.
  14. Franco, A., Bartoli, C., Conti, P., Miserocchi, L., & Testi, D. (2021). Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings. Energies (Basel), 14 (10), 2847. DOI: 10.3390/en14102847.
  15. Ivanko, D., Ding, Y., & Nord, N. (2021). Analysis of Heat Use Profiles in Norwegian Educational Institutions in Conditions of COVID-Lockdown. Journal of Building Engineering, 43. DOI: 10.1016/j. jobe.2021.102576.
  16. Bahmanyar, A., Estebsari, A., & Ernst, D. (2020). The Impact of Different COVID-19 Containment Measures on Electricity Consumption in Europe. Energy Res Soc Sci, 68, 101683. DOI: 10.1016/j. erss.2020.101683.
  17. Rolando, D., Pallard, W. M., & Molinari, M. (2022). Long‐Term Evaluation of Comfort, Indoor Air Quality and Energy Performance in Buildings: The Case of the KTH Live‐ In Lab Testbeds. Energies (Basel), 15 (14), 4955. DOI: 10.3390/en15144955.
  18. World Business Council for Sustainable Development. (2019). Transforming the Market: Energy Efficiency in Buildings. Survey Report. Geneva.
  19. Chattopadhyay, K., Garg, V., Paruchuri, P., Mathur, J., & Valluri, S. (2022). Impact of COVID-19 on Energy Consumption in a Residential Complex in Hyderabad, India. Energy Informatics, 5. DOI: 10.1186/s42162-022-00240-5.
  20. Todeschi, V., Javanroodi, K., Castello, R., Mohajeri, N., Mutani, G., & Scartezzini, J. L. (2022). Impact of the COVID-19 Pandemic on the Energy Performance of Residential Neighborhoods and their Occupancy Behaviour. Sustain Cities Soc., 82. DOI: 10.1016/j.scs.2022.103896.
  21. Tleuken, A., Tokazhanov, G., Serikbay, A.-B., Zhalgasbayev, K., Guney, M., Turkyilmaz, A., & Karaca, F. (2021). Household Water and Energy Consumption Changes during COVID-19 Pandemic Lockdowns: Cases of the Kazakhstani Cities of Almaty, Shymkent, and Atyrau. Buildings, 11 (12), 663. DOI: 10.3390/buildings11120663.
  22. Deshko, V., Bilous, I., Sukhodub, I., & Yatsenko, O. (2021). Evaluation of Energy Use for Heating in Residential Building under the Influence of Air Exchange Modes. Journal of Building Engineering, 42. DOI: 10.1016/j.jobe.2021.103020.
  23. Deshko, V., Bilous, I., Biriukov, D., & Yatsenko, O. (2021). Transient Energy Models of Housing Facilities Operation. Rocznik Ochrona Srodowiska, 23. DOI: 10.54740/ros.2021.038.
  24. Deshko, V., Bilous, I., Vynogradov-Saltykov, V., Shovkaliuk, M., & Hetmanchuk, H. (2020). Integrated Approaches to Determination of CO2 Concentration and Air Rate Exchange in Educational Institution. Rocznik Ochrona Srodowiska, 22 (1), 82–104.
  25. Verhovna Rada of Ukraine. (2017). Law of Ukraine On Energy Efficiency of Buildings. The Official Bulletin of the Verkhovna Rada, 33, Article 359. Available at https://zakon.rada.gov.ua/laws/show/2118-19?lang=en#Text.
  26. Hong, T., Chen, Y., Belafi, Z., & D’Oca, S. (2018). Occupant Behavior Models: A Critical Review of Implementation and representation approaches in Building Performance Simulation Programs. Building Simulation, 11 (1). DOI: 10.1007/s12273-017-0396-6.
  27. Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … & Glazer, J. (2001). EnergyPlus: Creating a New-Generation Building Energy Simulation Program. Energy Build, 33 (4), 319–333. DOI: 10.1016/S0378-7788(00)00114-6.
  28. U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). (n.d.). EnergyPlus. Available at https://energyplus.net/
  29. Minbud Ukrainy. (2021). Teplova izoliatsiia ta enerhoefektyvnist budivel, chynnyi vid 2022-09-01, na zaminu DBN V.2.6–31:2016. Vyd. ofits. (pp. 1–27). Ukraine.
  30. Minrehionbud Ukrainy. (2015). Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannia pry opalenni, okholodzhenni, ventyliatsii, osvitlenni ta hariachomu vodopostachanni; chynnyi vid 2016-01-01. Vyd. ofits. (pp. 1–145). Ukraine.
  31. International Weather for Energy Calculations. (n.d.). Available at https://energyplus.net/weather-location/europe_wmo_region_6/UKR.
  32. Ministry of Health of Ukraine. (n.d.). Available at https://covid19.gov.ua/karantynni-zakhody.
  33. Minbud Ukrainy. (2013). DBN V.2.5-67:2013. Opalennia, ventyliatsiia ta kondytsiiuvannia; chynnyi vid 2014–01–01, (pp. 1–149).
  34. Minrehionbud Ukrainy. (2013). DSTU-N B V.1.1–27:2010. Budivelna klimatolohiia; chynnyi vid 2011-11-01, (pp. 1–123).
  35. López-Sosa, L. B., Alvarado-Flores, J. J., del Niño Jesús Marín-Aguilar, T., Corral-Huacuz, J. C., Aguilera-Mandujano, A., Rodríguez-Torres, G. M., … & Ávalos-Rodríguez, M. L. (2021). COVID-19 Pandemic Effect on Energy Consumption in State Universities: Michoacan, Mexico Case Study. Energies, 14 (22), 7642. https://doi.org/10.3390/en14227642.
  36. Ayadi, O., Alnaser, S., Haj-ahmed, M., Khasawneh, H., Althaher, S., Alrbai, M., & Arabiat, M. (2023). Impacts of COVID-19 on Educational Buildings Energy Consumption: Case Study of the University of Jordan. Front Built Environ, 9. DOI: 10.3389/fbuil.2023.1212423.
  37. Agdas, D., & Barooah, P. (2020). Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View from Data. IEEE Access, 8, 205034-205050 DOI: 10.1109/ACCESS.2020.3016912.
  38. Valeriy, D., Inna, B., Maryna, S., & Maksym, H. (2020). Evaluation of Differentiated Impact of Apartment Building Occupants’ Behavior on Energy Consumption. 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 – Proceedings, (pp. 196–200). Kyiv, Ukraine, 2020. DOI: 10.1109/ESS50319.2020.9160046.
  39. Deshko, V., Sukhodub, I., & Yatsenko, O. (2018). Building Thermal State and Technical Systems Dynamic Modeling. Journal of New Technologies in Environmental Science, 2, 36–46.
  40. Lebedeva, K., Borodinecs, A., Krumins, A., Tamane, A., & Dzelzitis, E. (2021). Potential of End-User Electricity Peak Load Shift in Latvia. Latvian Journal of Physics and Technical Sciences, 58 (2), 32–44. DOI: 10.2478/lpts-2021-0010.
  41. Savchenko-Pererva, M., Radchuk, O., Rozhkova, L., Barsukova, H., & Savoiskyi, O. (2021). Determining Heat Losses in University Educational Premises and Developing an Algorithm for Implementing Energy-Saving Measures. Eastern-European Journal of Enterprise Technologies, 6 (8(114)), 48–59. DOI: 10.15587/1729-4061.2021.245794.
DOI: https://doi.org/10.2478/lpts-2024-0012 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 44 - 65
Published on: Mar 30, 2024
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 V. Deshko, I. Bilous, T. Boiko, O. Shevchenko, A. Borodinecs, J. Zemitis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.