References
- Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build, 152. DOI: 10.1016/j.enbuild.2017.07.038.
- Deshko, V., Bilous, I., Buyak, N., & Shevchenko, O. (2020). The impact of energy-efficient heating modes on human body exergy consumption in public buildings. In ESS 2020 – Proceedings. 12–14 May 2020, Kyiv, Ukraine. DOI: 10.1109/ESS50319.2020.9160270.
- Upitis, M., Amolina, I., Geipele, I., & Zeltins, N. (2020). Measures to Achieve the Energy Efficiency Improvement Targets in the Multi-Apartment Residential Sector. Latvian Journal of Physics and Technical Sciences, 57 (6), 41–52. DOI: 10.2478/lpts-2020-0032.
- Aliero, M. S., Pasha, M. F., Smith, D. T., Ghani, I., Asif, M., Jeong, S. R., & Samuel, M. (2022). Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques. Energies (Basel), 15 (23), 9231. DOI: 10.3390/en15239231.
- Saraiva, T. S., de Almeida, M., Bragança, L., & Barbosa, M. T. (2018). Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools. Sustainability (Switzerland), 10 (6), 1849. DOI: 10.3390/su10061849.
- Katić, D., Krstić, H., & Marenjak, S. (2021). Energy Performance of School Buildings by Construction Periods in Federation of Bosnia and Herzegovina. Buildings, 11 (2), 42. DOI: 10.3390/buildings11020042.
- He, Z., Hong, T., & Chou, S. K. (2021). A Framework for Estimating the Energy- Saving Potential of Occupant Behaviour Improvement. Appl. Energy, 287 (1), 116591. DOI: 10.1016/j.apenergy.2021.116591.
- Laaroussi, Y., Bahrar, M. Elmankibi, M., Draoui, A., & Si-Larbi, A. (2019). Occupant behaviour: A major issue for building energy performance. In IOP Conference Series: Materials Science and Engineering, 609, 072050. DOI: 10.1088/1757-899X/609/7/072050.
- Deshko, V., Bilous, I., & Boiko, T. (2022). Influence of Heating and Ventilation Modes on the Energy Consumption of University Educational Buildings under Quarantine Conditions in Ukraine. Journal of New Technologies in Environmental Science, 6 (1), 36–40.
- Alghamdi, S., Tang, W., Kanjanabootra, S., & Alterman, D. (2022). Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings, 12 (3), 329. DOI: 10.3390/buildings12030329.
- Sadowska, B., Piotrowska-Woroniak, J., Woroniak, G., & Sarosiek, W. (2022). Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies (Basel), 15 (8), 2886. DOI: 10.3390/en15082886.
- Jia, L. R., Han, J., Chen, X., Li, Q. Y., Lee, C. C., & Fung, Y. H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11 (12), 591. DOI: 10.3390/buildings11120591.
- Sun, C., & Zhai, Z. (2020). The Efficacy of Social Distance and Ventilation Effectiveness in Preventing COVID-19 Transmission. Sustain Cities Soc., 62. doi: 10.1016/j.scs.2020.102390.
- Franco, A., Bartoli, C., Conti, P., Miserocchi, L., & Testi, D. (2021). Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings. Energies (Basel), 14 (10), 2847. DOI: 10.3390/en14102847.
- Ivanko, D., Ding, Y., & Nord, N. (2021). Analysis of Heat Use Profiles in Norwegian Educational Institutions in Conditions of COVID-Lockdown. Journal of Building Engineering, 43. DOI: 10.1016/j. jobe.2021.102576.
- Bahmanyar, A., Estebsari, A., & Ernst, D. (2020). The Impact of Different COVID-19 Containment Measures on Electricity Consumption in Europe. Energy Res Soc Sci, 68, 101683. DOI: 10.1016/j. erss.2020.101683.
- Rolando, D., Pallard, W. M., & Molinari, M. (2022). Long‐Term Evaluation of Comfort, Indoor Air Quality and Energy Performance in Buildings: The Case of the KTH Live‐ In Lab Testbeds. Energies (Basel), 15 (14), 4955. DOI: 10.3390/en15144955.
- World Business Council for Sustainable Development. (2019). Transforming the Market: Energy Efficiency in Buildings. Survey Report. Geneva.
- Chattopadhyay, K., Garg, V., Paruchuri, P., Mathur, J., & Valluri, S. (2022). Impact of COVID-19 on Energy Consumption in a Residential Complex in Hyderabad, India. Energy Informatics, 5. DOI: 10.1186/s42162-022-00240-5.
- Todeschi, V., Javanroodi, K., Castello, R., Mohajeri, N., Mutani, G., & Scartezzini, J. L. (2022). Impact of the COVID-19 Pandemic on the Energy Performance of Residential Neighborhoods and their Occupancy Behaviour. Sustain Cities Soc., 82. DOI: 10.1016/j.scs.2022.103896.
- Tleuken, A., Tokazhanov, G., Serikbay, A.-B., Zhalgasbayev, K., Guney, M., Turkyilmaz, A., & Karaca, F. (2021). Household Water and Energy Consumption Changes during COVID-19 Pandemic Lockdowns: Cases of the Kazakhstani Cities of Almaty, Shymkent, and Atyrau. Buildings, 11 (12), 663. DOI: 10.3390/buildings11120663.
- Deshko, V., Bilous, I., Sukhodub, I., & Yatsenko, O. (2021). Evaluation of Energy Use for Heating in Residential Building under the Influence of Air Exchange Modes. Journal of Building Engineering, 42. DOI: 10.1016/j.jobe.2021.103020.
- Deshko, V., Bilous, I., Biriukov, D., & Yatsenko, O. (2021). Transient Energy Models of Housing Facilities Operation. Rocznik Ochrona Srodowiska, 23. DOI: 10.54740/ros.2021.038.
- Deshko, V., Bilous, I., Vynogradov-Saltykov, V., Shovkaliuk, M., & Hetmanchuk, H. (2020). Integrated Approaches to Determination of CO2 Concentration and Air Rate Exchange in Educational Institution. Rocznik Ochrona Srodowiska, 22 (1), 82–104.
- Verhovna Rada of Ukraine. (2017). Law of Ukraine On Energy Efficiency of Buildings. The Official Bulletin of the Verkhovna Rada, 33, Article 359. Available at https://zakon.rada.gov.ua/laws/show/2118-19?lang=en#Text.
- Hong, T., Chen, Y., Belafi, Z., & D’Oca, S. (2018). Occupant Behavior Models: A Critical Review of Implementation and representation approaches in Building Performance Simulation Programs. Building Simulation, 11 (1). DOI: 10.1007/s12273-017-0396-6.
- Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … & Glazer, J. (2001). EnergyPlus: Creating a New-Generation Building Energy Simulation Program. Energy Build, 33 (4), 319–333. DOI: 10.1016/S0378-7788(00)00114-6.
- U.S. Department of Energy’s (DOE) Building Technologies Office (BTO). (n.d.). EnergyPlus. Available at https://energyplus.net/
- Minbud Ukrainy. (2021). Teplova izoliatsiia ta enerhoefektyvnist budivel, chynnyi vid 2022-09-01, na zaminu DBN V.2.6–31:2016. Vyd. ofits. (pp. 1–27). Ukraine.
- Minrehionbud Ukrainy. (2015). Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannia pry opalenni, okholodzhenni, ventyliatsii, osvitlenni ta hariachomu vodopostachanni; chynnyi vid 2016-01-01. Vyd. ofits. (pp. 1–145). Ukraine.
- International Weather for Energy Calculations. (n.d.). Available at https://energyplus.net/weather-location/europe_wmo_region_6/UKR.
- Ministry of Health of Ukraine. (n.d.). Available at https://covid19.gov.ua/karantynni-zakhody.
- Minbud Ukrainy. (2013). DBN V.2.5-67:2013. Opalennia, ventyliatsiia ta kondytsiiuvannia; chynnyi vid 2014–01–01, (pp. 1–149).
- Minrehionbud Ukrainy. (2013). DSTU-N B V.1.1–27:2010. Budivelna klimatolohiia; chynnyi vid 2011-11-01, (pp. 1–123).
- López-Sosa, L. B., Alvarado-Flores, J. J., del Niño Jesús Marín-Aguilar, T., Corral-Huacuz, J. C., Aguilera-Mandujano, A., Rodríguez-Torres, G. M., … & Ávalos-Rodríguez, M. L. (2021). COVID-19 Pandemic Effect on Energy Consumption in State Universities: Michoacan, Mexico Case Study. Energies, 14 (22), 7642. https://doi.org/10.3390/en14227642.
- Ayadi, O., Alnaser, S., Haj-ahmed, M., Khasawneh, H., Althaher, S., Alrbai, M., & Arabiat, M. (2023). Impacts of COVID-19 on Educational Buildings Energy Consumption: Case Study of the University of Jordan. Front Built Environ, 9. DOI: 10.3389/fbuil.2023.1212423.
- Agdas, D., & Barooah, P. (2020). Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View from Data. IEEE Access, 8, 205034-205050 DOI: 10.1109/ACCESS.2020.3016912.
- Valeriy, D., Inna, B., Maryna, S., & Maksym, H. (2020). Evaluation of Differentiated Impact of Apartment Building Occupants’ Behavior on Energy Consumption. 2020 IEEE 7th International Conference on Energy Smart Systems, ESS 2020 – Proceedings, (pp. 196–200). Kyiv, Ukraine, 2020. DOI: 10.1109/ESS50319.2020.9160046.
- Deshko, V., Sukhodub, I., & Yatsenko, O. (2018). Building Thermal State and Technical Systems Dynamic Modeling. Journal of New Technologies in Environmental Science, 2, 36–46.
- Lebedeva, K., Borodinecs, A., Krumins, A., Tamane, A., & Dzelzitis, E. (2021). Potential of End-User Electricity Peak Load Shift in Latvia. Latvian Journal of Physics and Technical Sciences, 58 (2), 32–44. DOI: 10.2478/lpts-2021-0010.
- Savchenko-Pererva, M., Radchuk, O., Rozhkova, L., Barsukova, H., & Savoiskyi, O. (2021). Determining Heat Losses in University Educational Premises and Developing an Algorithm for Implementing Energy-Saving Measures. Eastern-European Journal of Enterprise Technologies, 6 (8(114)), 48–59. DOI: 10.15587/1729-4061.2021.245794.