References
- Ismail, I., Rahman, R. A., Haryanto, G., & Pane, E. A. (2021). The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. International Journal of Renewable Energy Research, 11 (2), 595–599. https://doi.org/10.20508/ijrer.v11i2.11862.g8181
- Atalay, H., Yavaş, N., & Turhan Çoban, M. (2022). Sustainability and Performance Analysis of a Solar and Wind Energy Assisted Hybrid Dryer. Renewable Energy, 187, 1173–1183. https://doi.org/10.1016/j.renene.2022.02.020
- Afzal, A., Iqbal, T., Ikram, K., Anjum, M. N., Umair, M., Azam, M., … & Majeed, F. (2023). Development of a Hybrid Mixed-Mode Solar Dryer for Product Drying. Heliyon, 9 (3), e14144. https://doi.org/10.1016/j.heliyon.2023.e14144
- Kundziņa, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. https://doi.org/10.2478/lpts-2022-0045
- Qiu, S., Ruth, M., & Ghosh, S. (2015). Evacuated Tube Collectors: A Notable Driver behind the Solar Water Heater Industry in China. Renewable and Sustainable Energy Reviews, 47, 580–588. https://doi.org/10.1016/j.rser.2015.03.067
- Salih, S. M., Jalil, J. M., & Najim, S. E. (2019). Experimental and Numerical Analysis of Double-Pass Solar Air Heater Utilizing Multiple Capsules PCM. Renewable Energy, 143, 1053–1066. https://doi.org/10.1016/j.renene.2019.05.050
- Abdeldjebar, R., Elmir, M., & Douha, M. (2023). Study of the Performance of a Photovoltaic Solar Panel By Using a Nanofluid as a Cooler. Latvian Journal of Physics and Technical Sciences, 60 (3), 69–84. https://doi.org/10.2478/lpts-2023-0018
- Favakeh, A., Khademi, A., & Shafii, M. B. (2019). Experimental Study of Double Solid Phase Change Material in a Cavity. 7th International Conference On Energy Research and Development, ICERD 2019, 24–31.
- Khademi, A., Mehrjardi, S. A. A., Said, Z., & Chamkha, A. J. (2023). Heat Transfer Improvement in a Thermal Energy Storage System Using Auxiliary Fluid Instead of Nano-PCM in an Inclined Enclosure: A Comparative Study. Journal of Applied and Computational Mechanics, 9 (2), 475–486. https://doi.org/10.22055/jacm.2022.41867.3829
- Assari, M. R., Basirat Tabrizi, H., Parvar, M., & Alkasir Farhani, M. (2019). Experimental Investigation Of Sinusoidal Tube in Triplex-Tube Heat Exchanger during Charging and Discharging Processes Using Phase Change Materials. International Journal of Engineering, Transactions A: Basics, 32 (7), 999–1009. https://doi.org/10.5829/ije.2019.32.07a.13
- Kairisa, E., & Mutule, A. (2023). Reliable Data Profiling for Energy Communities - Review of Open-Source Approaches. Latvian Journal of Physics and Technical Sciences, 60 (2), 17–30. https://doi.org/10.2478/lpts-2023-0008
- Suyitno, B. M., Ismail, I., Rahman, R. A. (2023). Improving the performance of a small-scale cascade latent heat storage system by using gradual melting temperature storage tank. Case Studies in Thermal Engineering, 45, 103034. https://doi.org/10.1016/j.csite.2023.103034
- Klimeš, L., Charvát, P., Mastani Joybari, M., Zálešák, M., Haghighat, F., Panchabikesan, K., … & Yuan, Y. (2020). Computer Modelling and Experimental Investigation of Phase Change Hysteresis of PCMs: The State-of-the-Art Review. Applied Energy, 263, 114572. https://doi.org/10.1016/j.apenergy.2020.114572
- Suyitno, B. M., Pane, E. A., Rahmalina, D., Rahman, R. A. (2023). Improving the operation and thermal response of multiphase coexistence latent storage system using stabilized organic phase change material. Results in Engineering, 18, 101210. https://doi.org/10.1016/j.rineng.2023.101210
- Ma, X., Sheikholeslami, M., Jafaryar, M., Shafee, A., Nguyen-Thoi, T., & Li, Z. (2020). Solidification Inside a Clean Energy Storage Unit Utilizing Phase Change Material with Copper Oxide Nanoparticles. Journal of Cleaner Production, 245, 118888. https://doi.org/10.1016/j.jclepro.2019.118888
- Putra, N., Rawi, S., Amin, M., Kusrini, E., Kosasih, E. A., & Indra Mahlia, T. M. (2019). Preparation of Beeswax/Multi-Walled Carbon Nanotubes as Novel Shape-Stable Nanocomposite Phase-Change Material for Thermal Energy Storage. Journal of Energy Storage, 21, 32–39. https://doi.org/10.1016/j.est.2018.11.007
- Elbrashy, A. A., Abou-Taleb, F. S., El-Fakharany, M. K., & Essa, F. A. (2022). Experimental Study of Solar Air Heater Performance by Evacuated Tubes Connected in Series and Loaded with Thermal Storage Material. Journal of Energy Storage, 54, 105266. https://doi.org/10.1016/j.est.2022.105266
- Ismail, I., Syahbana, M. S. L., & Rahman, R. A. (2022). Thermal Performance Assessment for an Active Latent Heat Storage Tank by Using Various Finned-Coil Heat Exchangers. International Journal of Heat and Technology, 40 (6), 1470–1477. https://doi.org/10.18280/ijht.400615
- Bouselsal, M., Mebarek-Oudina, F., Biswas, N., & Ismail, A. A. I. (2023). Heat Transfer Enhancement Using Al2O3-MWCNT Hybrid-Nanofluid inside a Tube/Shell Heat Exchanger with Different Tube Shapes. Micromachines, 14 (1072).
- Khademi, A., Mehrjardi, S. A. A., Said, Z., Saidur, R., Ushak, S., & Chamkha, A. J. (2023). A Comparative Study of Melting Behavior of Phase Change Material with Direct Fluid Contact and Container Inclination. Energy Nexus, 10, 100196. https://doi.org/10.1016/j.nexus.2023.100196
- Hosseininaveh, H., Mohammadi, O., Faghiri, S., & Shafii, M. B. (2021). A Comprehensive Study on the Complete Charging-Discharging Cycle of a Phase Change Material Using Intermediate Boiling Fluid to Control Energy Flow. Journal of Energy Storage, 35, 102235. https://doi.org/10.1016/j.est.2021.102235
- Kulkarni, P., & Muthadhi, A. (2020). Improving Thermal and Mechanical Property of Lightweight Concrete Using n-Butyl Stearate/Expanded Clay Aggregate with Alccofine1203. International Journal of Engineering, Transactions A: Basics, 33 (10), 1842–1851. https://doi.org/10.5829/IJE.2020.33.10A.03
- Orozco, M. A., Acurio, K., Vásquez-Aza, F., Martínez-Gómez, J., & Chico-Proano, A. (2021). Thermal Storage of Nitrate Salts as Phase Change Materials (PCMs). Materials, 14 (23). https://doi.org/10.3390/ma14237223
- Caraballo, A., Galán-Casado, S., Caballero, Á., & Serena, S. (2021). Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies, 14 (4), 1–15. https://doi.org/10.3390/en14041197
- Peinado, A., Pliego, A., Pedro, F., & Márquez, G. (2019). A Review of the Application Performances of Concentrated Solar Power Systems. Applied Energy, 255, 113893. https://doi.org/10.1016/j.apenergy.2019.113893
- Jiang, F., Zhang, L., Cang, D., Ling, X., & Ding, Y. (2021). Preparation and Characterization of a Heat Storage Material: Shape-Stabilized KNO3 Using a Modified Diatomite-Based Porous Ceramic as the Skeleton. Ceramics International, 47 (18), 26301–26309. https://doi.org/10.1016/j.ceramint.2021.06.040
- Dunlop, T. O., Jarvis, D. J., Voice, W. E., & Sullivan, J. H. (2018). Stabilization of Molten Salt Materials Using Metal Chlorides for Solar Thermal Storage. Scientific Reports, 8 (1), 1–7. https://doi.org/10.1038/s41598-018-26537-8
- Lincu, D., Ioniţǎ, S., Mocioiu, O. C., Berger, D., Matei, C., & Mitran, R. A. (2022). Aluminum Doping of Mesoporous Silica as a Promising Strategy for Increasing the Energy Storage of Shape Stabilized Phase Change Materials Containing Molten NaNO3: KNO3 Eutectic Mixture. Journal of Energy Storage, 49. https://doi.org/10.1016/j.est.2022.104188
- Qu, Y., Wang, S., Tian, Y., & Zhou, D. (2019). Comprehensive Evaluation of Paraffin-HDPE Shape Stabilized PCM with Hybrid Carbon Nano-Additives. Applied Thermal Engineering, 163. https://doi.org/10.1016/j.applthermaleng.2019.114404
- Favakeh, A., Khademi, A., & Shafii, M. B. (2023). Experimental Investigation of the Melting Process of Immiscible Binary Phase Change Materials. Heat Transfer Engineering, 44 (2), 154–174. https://doi.org/10.1080/01457632.2022.2034085
- Cárdenas-Ramírez, C., Jaramillo, F., Fernández, A. G., Cabeza, L. F., & Gómez, M. A. (2021). Influence of Thermal Treatments on the Absorption and Thermal Properties of a Clay Mineral Support Used for Shape-Stabilization of Fatty Acids. Journal of Energy Storage, 36. https://doi.org/10.1016/j.est.2021.102427
- Lu, Y., Zhang, G., Hao, J., Ren, Z., Deng, Z., Xu, G., … & Chang, L. (2019). Fabrication and Characterization of the Novel Shape-Stabilized Composite PCMs of Na2CO3-K2CO3/MgO/Glass. Solar Energy, 189, 228–234. https://doi.org/10.1016/j.solener.2019.07.064
- Mitran, R. A., Lincu, D., Buhǎlţeanu, L., Berger, D., & Matei, C. (2020). Shape-Stabilized Phase Change Materials Using Molten NaNO3 – KNO3 Eutectic and Mesoporous Silica Matrices. Solar Energy Materials and Solar Cells, 215. https://doi.org/10.1016/j.solmat.2020.110644
- Jančík, P., Schmirler, M., Hyhlík, T., Bláha, A., Sláma, P., Devera, J., & Kouba, J. (2021). Experimental Investigation and Modelling of a Laboratory-Scale Latent Heat Storage with Cylindrical PCM Capsules. Scientific Reports, 11 (1), 1–15. https://doi.org/10.1038/s41598-021-02705-1
- Fernández, A. G., Galleguillos, H., Fuentealba, E., & Pérez, F. J. (2015). Thermal Characterization of HITEC Molten Salt for Energy Storage in Solar Linear Concentrated Technology. Journal of Thermal Analysis and Calorimetry, 122 (1), 3–9. https://doi.org/10.1007/s10973-015-4715-9
- Jiang, F., Zhang, L., She, X., Li, C., Cang, D., Liu, X., … & Ding, Y. (2020). Skeleton Materials for Shape-Stabilization of High Temperature Salts Based Phase Change Materials: A Critical Review. Renewable and Sustainable Energy Reviews, 119, 109539. https://doi.org/10.1016/j.rser.2019.109539
- Zsembinszki, G., Orozco, C., Gasia, J., Barz, T., Emhofer, J., & Cabeza, L. F. (2020). Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies, 13 (6). https://doi.org/10.3390/en13061425
- Li, P., Xu, C., Liao, Z., Ju, X., & Ye, F. (2020). Numerical Investigation on the Thermal Performance of a Cascaded Latent Heat Thermal Energy Storage. Frontiers in Heat and Mass Transfer, 15 (1), 1–10. https://doi.org/10.5098/hmt.15.10
- Mayilvelnathan, V., & Valan Arasu, A. (2020). Experimental Investigation on Thermal Behavior of Graphene Dispersed Erythritol PCM in a Shell and Helical Tube Latent Energy Storage System. International Journal of Thermal Sciences, 155, 106446. https://doi.org/10.1016/j.ijthermalsci.2020.106446
- Barz, T., & Emhofer, J. (2021). Paraffins as Phase Change Material in a Compact Plate-Fin Heat Exchanger - Part I: Experimental Analysis and Modeling of Complete Phase Transitions. Journal of Energy Storage, 33. https://doi.org/10.1016/j.est.2020.102164
- Janghel, D., Saha, S. K., & Karagadde, S. (2020). Effect of Shrinkage Void on Thermal Performance of Pure and Binary Phase Change Materials Based Thermal Energy Storage System: A Semi-analytical Approach. Applied Thermal Engineering, 167, 114706. https://doi.org/10.1016/j.applthermaleng.2019.114706