References
- Gerasimov, A.A., Aleksandrov, I.S., & Dorokhov, P.I. (2015). Energy Efficiency in Engineering Systems: Module Reference Book. Kaliningrad.
- Siegenthaler, J. (January, 2011). How to Improve the Energy Efficiency of Boiler Systems. Available at https://www.weilmclain.com/news/boiler-systems-and-energy-saving
- Laptev, A.G., Nikolaev, N.A., & Basharov, M.M. (2011). Methods of Intensification and Modelling of Heat and Mass Transfer Processes: Educational and Reference Manual. Moscow. [in Russian]
- Stehlik, P., Jegla, Z., & Kilkovsky, B. (2013). Possibilities of Intensifying Heat Transfer in Heat Exchangers for High Temperature Applications. Chemical Engineering Transactions, 35, 439–444. doi:10.3303/CET1335073
- Zhang, T. (2020). Methods of Improving the Efficiency of Thermal Power Plants. Journal of Physics: Conference Series, 1449, 012001. doi:10.1088/1742-6596/1449/1/012001
- Nussupbekov, B.R., Sakipova, S.E., Ospanova, D.A., Kutum, B.B., Shaimerdenova, K.M., & Bekturganov, Zh.S. (2022). Some Technological Aspects of Cleaning Pipes of Heat Exchangers from Solid Scale Deposits. Bulletin of the Karaganda University. Physics Series, 4 (108), 106–114. doi: 10.31489/2022PH4/106-114.
- Liu, Y., Wang, H., Ayub, I., Yang, F., Wu, Z., & Zhang, Z. (2021). A Variable Cross-section Annular Fins Type Metal Hydride Reactor for Improving the Phenomenon of Inhomogeneous Reaction in the Thermal Energy Storage Processes. Applied Energy, 295, 117073. https://doi.org/10.1016/j.apenergy.
- Laptev, A.G., Basharov, M.M., & Farakhov, T.M. (2017). Determination of Heat Transfer Coefficients in Channels with Process Intensifiers. Energy Problems, 19, (11–12), 112–118.
- Wajs, J., Bajor, M., & Mikielewicz, D. (2019). Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets. Energies, 2, 3276. https://doi.org/10.3390/en12173276
- Rydalina, N., Antonova, E., Akhmetova, I., Ilyashenko, S., Afanaseva, O., Bianco, V., & Fedyukhin, A. (2020). Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems. Energies, 13 (22), 5854. https://doi.org/10.3390/en13225854.
- Popov, I.A., Shchelchkov, A.V., Yarkaev, M.Z., Al-Janabi, A.Kh.A., Skrypnik, A.N. (2014). Heat exchangers with heat transfer intensification. Energy of Tatarstan, 1 (19), 10–16.
- Brodov, Yu.M., Aronson, K.E., Ryabchikov, A.Yu., Blinkov S.N., Kuptsov V.K., Murmansky I.B. (2016). Increasing the Efficiency of Heat Exchangers of Steam Turbine Installations through the Use of Profile Twisted Tubes. News of Universities. Energy problems, (7–8), 72–78.
- Kutum, B.B., Ospanova, D.A., Nussupbekov, B.R., & Oshanov, Y.Z. (2023). Research of Process Water of a Thermal Power Plant. Eastern-European Journal of Enterprise Technologies, 2 (6–122), 53–61. doi: 10.15587/1729-4061.2023.276486.
- Ospanova, D. A., Kutum, B. B., & Nusupbekov, B. R. (2022). Features of Nutrient Water Purification in Thermal Power Facilities. Actual Scientific Research in the Modern World. International Science Journal, 10 (90), 138–144.
- Tekhnologicheskie resheniya proekta 09L129 “Ustanovka t.a. st. no. 5 Vodopodgotovka podpitki teploseti s predochistkoy” razrabotany dlya JSC Institut KazNIPIEnergoprom (2019). Karaganda, 187. [in Russian]
- Karabelas, A. J. (2002). Scale Formation in Tubular Heat Exchangers. International Journal of Thermal Sciences, 41 (7), 682–692. https://doi.org/10.1016/S1290-0729(02)01363-7
- Sakipova, S.E. (2009). Study of the Structure of Scale Deposits on Heat Transfer Surfaces and Technology for their Destruction. Bulletin of KarSU. Physical Series, 1 (53), 66–71.
- Ivakhnenko, A.G. (1975). Long-term Control and Forecasting of Complex Systems. Kyiv. [in Russian]
- Sakipova, S.E., Shaimerdenova, K.M., Nussupbekov, B.R., Ospanova, D.A., & Kutum, B.B. (2023). Modeling the Dynamics of Heat and Mass Transfer Processes in a Tubular Heat Exchanger under Pulsed Influences. Eurasian Phys. Tech. J., 20 (1(43), 51–55. doi.org/10.31489/2023No1/51-55