Have a personal or library account? Click to login
Density-Based Topological Optimization of 3D-Printed Casts for Fracture Treatment with Freefem Software Cover

Density-Based Topological Optimization of 3D-Printed Casts for Fracture Treatment with Freefem Software

Open Access
|Dec 2023

References

  1. Ranaldo, D., Zonta, F., Florian, S., & Lazzaro, J. (2023). A Facile, Semi-Automatic Protocol for the Design and Production of 3D Printed, Anatomical Customized Orthopedic Casts for Forearm Fractures. Journal of Clinical Orthopaedics and Trauma, 42, 102206.
  2. Lin, H., Shi, L., & Wang, D. (2015). A Rapid and Intelligent Designing Technique for Patient-Specific and 3D-Printed Orthopedic Cast. 3D Printing in Medicine, 2 (1), 4.
  3. Zhang, X., Fang, G., Dai, Ch., Verlinden, J., Wu, J., Whiting, E. & Wang, Ch. (2017). Thermal-comfort design of personalized casts. In UIST ‘17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (pp. 243–254). ACM, New York, USA.
  4. Rao, C., Tianc, L., Yan, D.-M., Liao, Sh., Deussen, O. & Lu, L. (2019). Computer Aided Geometric Design, 71, 130–141.
  5. Zhang, Y., & Kwok, Tsz. (2019). Customization and Topology Optimization of Compression Casts/Braces on Two-Manifold Surfaces. Computer-Aided Design, 111, 113–122.
  6. Sigmund, O., & Maute, K. (2013). Topology Optimization Approaches. Structural and Multidisciplinary Optimization, 48, 1031–1055.
  7. Bendsoe, M. P. (1989). Optimal Shape Design as a Material Distribution Problem. Structural Optimization, 1, 193–202.
  8. Hecht, F. (2012). New Development in FreeFem++. Journal of Numerical Mathematics, 20, 251–265.
  9. Bonnetier, E., & Dapogny, C. (n.d.). Optimization of a Cantilever Beam with Density-Based Topology Optimization Algorithm. An Introduction to Shape and Topology Optimization. Available at https://membres-ljk.imag.fr/Charles.Dapogny/coursoptim.html
  10. Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331.
  11. Balarac, G., Basile, F., Bénard, F. P., Bordeu, F., Chapelier, J.-B., Cirrottola, L., … & Zakari, M. (2022). Tetrahedral Remeshing in the Context of Large-Scale Numerical Simulation and High Performance Computing. MathematicS In Action, 11 (1), 129–164.
  12. Pszczółkowski, B., Nowak, K.W., Rejmer, W., Bramowicz, M., Dzadz, Ł., & Gałęcki, R. (2022). A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method. Materials, 15, 149.
  13. Van Kuilenburg, J., Masen, M. A., & van der Heide, E. (2012). Contact Modelling of Human Skin: What Value to Use for the Modulus of Elasticity? Proc IMechE Part J: J. Engineering Tribology, 227 (4), 349–361.
DOI: https://doi.org/10.2478/lpts-2023-0050 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 124 - 141
Published on: Dec 9, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 K. Kokars, A. Krauze, K. Muiznieks, J. Virbulis, P. Verners, A. Gutcaits, J. Olins, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.