Have a personal or library account? Click to login
Applying Dynamic U-Value Measurements for State Forecasting in Buildings Cover

Applying Dynamic U-Value Measurements for State Forecasting in Buildings

By: J. Telicko and  A. Jakovics  
Open Access
|Dec 2023

References

  1. Lallouche, A., Kolodyaznaya, V., Boulkrane, M. S., & Baranenko, D. (2017). Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Dates. Environmental and Climate Technologies, 20, 24–35. https://doi.org/10.1515/rtuect-2017-0008.
  2. Cao, X., Xilei, D., & Liu, J. (2016). Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings during the Past Decade. Energy and Buildings, 128, 6.
  3. Klepeis, N., Nelson, W., Ott, W., Robinson, J., Tsang, A., Switzer, P., … & Engelmann, W. (2001). The National Human Activity Pattern Survey (Nhaps): A Resource for Assessing Exposure to Environmental Pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11, 231–52.
  4. Lee, D., & Cheng, C.-C. (2016). Energy Savings by Energy Management Systems: A Review. Renewable and Sustainable Energy Reviews, 56, 760–777.
  5. Wabersich, K.P., & Zeilinger, M.N. (2020). Performance and Safety of Bayesian Model Predictive Control: Scalable Model-Based RL with Guarantees. ArXiv, abs/2006.03483.
  6. Abioye, S., Oyedele, L., Akanbi, L., Ajayi, A., Davila Delgado, M., Bilal, M., … & Ahmed, A. (2021). Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. Journal of Building Engineering, 44, 103299.
  7. Kolokotsa, D., Pouliezos, A., Stavrakakis, G., & Lazos, C. (2009). Predictive Control Techniques for Energy and Indoor Environmental Quality Management in Buildings. Building and Environment, 44 (9), 1850–1863.
  8. Oldewurtel, F., Parisio, A., Jones, C.N., Gyalistras, D., Gwerder, M., Stauch, V. … & Morari, M. (2012). Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control. Energy and Buildings, 45, 15–27.
  9. Kalogirou, S.A. (2001). Artificial Neural Networks in Renewable Energy Systems Applications: A Review. Renewable and Sustainable Energy Reviews, 5 (4), 373–401.
  10. Afroz, Z., Shafiullah, G., Urmee, T., & Higgins, G. (2017). Prediction of Indoor Temperature in an Institutional Building. Energy Procedia, 142, 1860–1866.
  11. Kalogirou, S.A. (2001). Artificial Neural Networks in Renewable Energy Systems Applications: A Review. Renewable and Sustainable Energy Reviews, 5 (4), 373–401.
  12. Siami-Namini, S., Tavakoli, N., & Namin, A.S. (2019). The performance of LSTM and BiLSTM in forecasting time series. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 3285–3292). doi: 10.1109/BigData47090.2019.9005997.
  13. Lara-Benítez, P., Carranza-García, M., Luna-Romera, J., & Riquelme, J. (2020). Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting. Applied Sciences, 10, 2322.
  14. Vereecken, E., & Roels, S. (2012). Review of Mould Prediction Models and their Influence on Mould Risk Evaluation. Building and Environment, 51, 296–310.
  15. Künzel, H. (1995). Simultaneous Heat and Moisture Transport in Building Components: One-and Two-Dimensional Calculation. Fraunhofer.
  16. Prozuments, A., Staveckis, A., Zemitis, J., & Bajare, D. (2021). Evaluation of Heating and Cooling Loads for a Well-Insulated Single-Family House under Variable Climate Pattern. Environmental and Climate Technologies, 25, 750–763. 10.2478/rtuect-2021-0056.
  17. Ficco, G., Iannetta, F., Ianniello, E., Romana d’Ambrosio Alfano, F., & Dell’Isola, M. (2015). U-Value in Situ Measurement for Energy Diagnosis of Existing Buildings. Energy and Buildings, 104, 108–121.
  18. Márquez, J.A., Bohórquez, M.M., & Melgar, S. G. (2017). A New Metre for Cheap, Quick, Reliable and Simple Thermal Transmittance (U-Value) Measurements in Buildings. Sensors, 17 (9).
  19. Telicko, J., Jakovics, A., & Drikis, I. (2019). A Low-Cost Wireless Sensor Network for Long-Term Monitoring of Energy Performance and Sustainability of Buildings. MATEC Web of Conferences, 282, 02039. 10.1051/matecconf/201928202039.
  20. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Adaptive computation and machine learning. MIT Press.
  21. Dombaycı, A. (2010). The Prediction of Heating Energy Consumption in a Model House by Using Artificial Neural Networks in Denizli–Turkey. Advances in Engineering Software, 41 (2), 141–147.
  22. Gao, M., Sun, F.Z., Zhou, S.-J., Shi, Y.-T., Zhao, Y.-B., & Wang, N.-H. (2009). Performance Prediction of Wet Cooling Tower Using Artificial Neural Network under Cross-Wind Conditions. International Journal of Thermal Sciences, 48 (3), 583–589.
  23. Escamilla-García, A., Escamilla-Garćıa, G., Soto-Zarazúa, M., Toledano-Ayala, M., Rivas-Araiza, E., & Gastélum -Barrios, A. (2020). Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Applied Sciences, 10 (11).
  24. Kalogirou, S. A. (2001). Artificial Neural Networks in Renewable Energy Systems Applications: A Review. Renew. Sustain. Energy Rev., 5, 373–401.
  25. Zhou, Q., & Ooka, R. (2021). Performance of Neural Network for Indoor Airflow Prediction: Sensitivity towards Weight Initialization. Energy and Buildings, 246, 111106.
  26. Liu, Y., Starzyk, J.A., & Zhu, Z. (2008). Optimized Approximation Algorithm in Neural Networks Without Overfitting. IEEE Transactions on Neural Networks, 19 (6), 983–995.
  27. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735–1780.
DOI: https://doi.org/10.2478/lpts-2023-0047 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 81 - 94
Published on: Dec 9, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 J. Telicko, A. Jakovics, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.