Have a personal or library account? Click to login
Numerical Insights Into Gas Mixing System Design for Energy Conversion Processes Cover

Numerical Insights Into Gas Mixing System Design for Energy Conversion Processes

Open Access
|Dec 2023

References

  1. Aasberg-Petersen, K., Bak Hansen, J.-H., Christensen, T.S., Dybkjaer, I., Seier Christensen, P., Stub Nielsen, C., & Winter, S.E.L. (2001). Technologies for Large-Scale Gas Conversion. Applied Catalysis A: General, 221 (1), 379–387. https://doi.org/10.1016/S0926-860X(01)00811-0.
  2. Bolívar Caballero, J.J., Zaini, I.N., & Yang, W. (2022). Reforming Processes for Syngas Production: A Mini-Review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels. Applications in Energy and Combustion Science, 10, 100064. https://doi.org/10.1016/j.jaecs.2022.100064.
  3. Keiski, R. L., Ojala, S., Huuhtanen, M., Kolli, T., & Leiviskä, K. (2011). Partial Oxidation (POX) Processes and Technology for Clean Fuel and Chemical Production. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology, 262–286. https://doi.org/10.1533/9780857093783.3.262.
  4. Lu, X., & Wang, T. (2015). Simulation of Ash Deposition Behavior in an Entrained Flow Coal Gasifier. International Journal of Clean Coal and Energy, 4, 43–59. https://doi.org/10.4236/ijcce.2015.42005.
  5. Bhuiyan, A.A., & Naser, J. (1015). Modeling of Slagging in Industrial Furnace: A Comprehensive Review. Procedia Engineering, 105, 512–519. http://dx.doi.org/10.1016/j.proeng.2015.05.084.
  6. Christensen, T., & Primdahl, I.I. (1994). Improve Syngas Production Using Autothermal Reforming. Hydrocarbon Processing.
  7. Wang, Y., Gu, M., Wu, J., Cao, L., Lin, Y., & Huang, X. (2021). Formation of Soot Particles in Methane and Ethylene Combustion: A Reactive Molecular Dynamics Study. International Journal of Hydrogen Energy, 46 (73), 36557–36568. https://doi.org/10.1016/j.ijhydene.2021.08.125.
  8. Cañete, B., Gigola, C.E., & Brignole, N.B. (2014). Synthesis Gas Processes for Methanol Production via CH4 Reforming with CO2, H2O, and O2. Industrial & Engineering Chemistry Research, 53 (17), 7103–7112. https://doi.org/10.1021/ie404425e.
  9. Ma, R., Xu, B., & Zhang, X. (2019). Catalytic Partial Oxidation (CPOX) of Natural Gas and Renewable Hydrocarbons/Oxygenated Hydrocarbons—A Review. Catalysis Today, 338, 18–30. https://doi.org/10.1016/j.cattod.2019.06.025.
  10. ANSYS. (n.d.). ANSYS FLUENT 12.0 Theory Guide - 4.11.2 Filtered Navier-Stokes Equations. Available at https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node94.htm
  11. Nicoud, F., & Ducros, F. (1999). Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow, Turbulence and Combustion, 62 (3), 183–200.
  12. Westbrook, C.L., & Dryer, F.L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. Technol., 27, 31–43.
  13. Bustanmante, F., Enick, R.M., Killmeyer, R.P., Howard, B.H., Rothenberger, K.S., Cugini, A.V., … & Ciocco, M.V. (2005). Uncatalyzed and Well-catalyzed Forward Water-Gas Shift Reaction Kinetics. AIChE J., 51, 1440–1454.
  14. Gomez, M.A., Porteiro, J., Patino, D., & Miguez, J.L. (2014). CFD Modelling of Thermal Conversion and Packed Bed Compaction in Biomass Combustion. Fuel, 117, 716–732. http://dx.doi.org/10.1016/j.fuel.2013.08.078
  15. Hou, K., & Hughes, R. (2001). The Kinetics of Methane Steam Reforming over a Ni/α-Al2O Catalyst. Chemical Engineering Journal, 82, 311–328.
  16. Openfoam. (n.d.). OpenFOAM v2112. Available at https://www.openfoam.com/news/main-news/openfoam-v2112
  17. NIST Chemistry WebBook. (n.d.). Thermophysical Properties of Fluid Systems. Available at https://webbook.nist.gov/chemistry/fluid/
  18. Openfoam. (n.d.). OpenFOAM v10 User Guide - 7.1 Thermophysical Models. Available at https://doc.cfd.direct/openfoam/user-guide-v10/thermophysical
  19. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., … & Qin, Z. (n.d.) GRI-Mech 3.0. Available: http://combustion.berkeley.edu/gri-mech/version30/text30.html
  20. Cox, K. R., & Chapman, W. G. (2001). The Properties of Gases and Liquids (5th ed.). McGraw-Hill: New York.
  21. Yoshizawa, A. (1986). Statistical Theory for Compressible Turbulent Shear Flows, with the Application to Subgrid Modelling. The Physics of Fluids, 29 (7), 2152–2164. https://doi.org/10.1063/1.865552
  22. Bellos, V., Nalbantis, I., & Tsakiris, G. (2018). Friction Modeling of Flood Flow Simulations. Journal of Hydraulic Engineering, 144 (12), 04018073. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001540.
DOI: https://doi.org/10.2478/lpts-2023-0044 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 44 - 59
Published on: Dec 9, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 M. Klevs, G. Zageris, A. A. Ziemelis, V. Dzelme, V. Geza, A. Jakovics, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.