Have a personal or library account? Click to login
Numerical Modelling of a Turbine Flow Meter Used as Part of the Hydrogen Compressor System Cover

Numerical Modelling of a Turbine Flow Meter Used as Part of the Hydrogen Compressor System

Open Access
|Nov 2023

References

  1. Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. LVP2022000071, 31.08.2022.
  2. Benard, Ing C. J. (1988). Handbook of fluid flowmetering (1st ed.). UK: Trade & Technical Press.
  3. International Organization of Legal Metrology. (n.d.). OIML Website. Available at https://www.oiml.org
  4. European Association of National Metrology Institutes. (n.d.) Metrology for Regulation Event. Available at https://www.euramet.org
  5. Guo, S., Sun, L., Zhang, T., Yang, W., & Yang, Z. (2013). Analysis of Viscosity Effect on Turbine Flowmeter Performance Based on Experiments and CFD Simulations. Flow Meas. Instrum., 34, 42–52. doi: 10.1016/j. flowmeasinst.2013.07.016.
  6. Tegtmeier, C. (2015). CFD Analysis of Viscosity Effects on Turbine Flow Meter Performance and Calibration. Master Thesis, University of Tennessee. https://trace.tennessee.edu/utk_gradthes/3415
  7. Ruiz, V., Pereira, M.T., & Taira, N.M. (2013). Turbine flowmeter and viscosity effects of liquid hydrocarbons. In 16th Int. Flow Meas. Conf. 2013, FLOMEKO 2013, (pp. 479–483).
  8. Guo, S., Yang, Z., Wang, F., Zhao, N., & Li, X. (2021). Optimal Design of Wide Viscosity Range Turbine Flow Sensor Based on Flow Field Analysis. Flow Meas. Instrum., 79, 101909. doi: 10.1016/j. flowmeasinst.2021.101909.
  9. Guo, S., Wang, S., Zheng, X., Zhao, N., Fang, L., & Li, X. (2019). Optimization of turbine flow sensor structure based on the velocity distribution inlet. In I2MTC 2019 – 2019 IEEE Int. Instrum. Meas. Technol. Conf. Proc. doi: 10.1109/I2MTC.2019.8827083.
  10. Wang, Z., & Zhang, T. (2010). Optimization of geometric parameters of the rotor in the turbine flowmeter. In 15th Int. Flow Meas. Conf. 2010, FLOMEKO 2010, (pp. 896–906).
  11. Ren, Z., Zhou, W., & Li, D. (2022). Response and Flow Characteristics of a Dual-Rotor Turbine Flowmeter. Flow Meas. Instrum., 83, 102120. doi: 10.1016/j. flowmeasinst.2022.102120.
  12. Lijun, S., Zhaoying, Z., & Tao, Z. (2007). Quantitative Optimization Method for Rotor Geometric Parameters of Liquid Turbine Flow Sensor. Chin. J. Sci. Instrum., 28 (3), 493.
  13. Saboohi, Z., Sorkhkhah, S., & Shakeri, H. (2015). Developing a Model for Prediction of Helical Turbine Flowmeter Performance Using CFD. Flow Meas. Instrum., 42, 47–57.
  14. Lavante, E.V., Kettner, T., & Lazaroski, N. (2003). Numerical simulation of unsteady three-dimensional flow fields in a turbine flowmeter. In Proceedings of the International Conference on Flow Measurement. 12–14 May 2003, Groningen, the Netherlands.
  15. Lavante, E.V., Banaszak, U., & Kettner, T. (2004). Numerical simulation of Reynolds number effects in a turbine flowmeter. In Proceedings of the International Conference on Flow Measurement, (pp. 575–582). Guilin, Chine.
DOI: https://doi.org/10.2478/lpts-2023-0040 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 113 - 126
Published on: Nov 30, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 S. Orlova, T. N. Devdas, V. P. K. Vasudev, S. Upnere, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.