Have a personal or library account? Click to login
Additive Manufacturing of Ti-6Al-4V with Carbon Nanotube Composite Material Cover

Additive Manufacturing of Ti-6Al-4V with Carbon Nanotube Composite Material

By: A. Vevers and  A. Kromanis  
Open Access
|Nov 2023

References

  1. Baudana, G., Biamino, S., Ugues, D., Lombardi, M., Fino, P. Pavese, (2016). Metal Powder Report, 193-199.
  2. Y. Hao, S. Li, R. Yang (2016). Effects of Rare Metals, (35)
  3. M.F.F.A. Hamidi, W.S.W. Harun, M. Samykano, S.A.C. Ghani, Z. Ghazalli, F. Ahmad (2017). A review of powder additive manufacturing processes formetallic biomaterials (C78)
  4. N. Soro, et.al. (2019). Investigation of the structure and mechanical properties of additively manufactured Ti−6Al−4V biomedical scaffolds designed with a schwartz primitive unit-cell, (A 745),195–202.
  5. S. Ehtemam-Haghighi, et.al. (2019). Microstructure, phase composition and mechanical properties of new, low cost Ti− Mn−Nb alloys for biomedical applications, J. Alloy. Comp, (787, 570-577)
  6. Donachie MJ (2000). Titanium: a technical guide. 2nd ed. Materials Park, OH: ASM International
  7. Cui C, Hu B, Zhao L, Liu S (2011). Titanium alloy production technology, market prospects and industry development, (32), 1684–91
  8. Karolina Karolewska, et.al. (2020). Strength analysis of Ti6Al4V titanium alloy produced by the use of additive manufacturing method under static load conditions, Journal of Materials Research and Technology, (Volume 9, Issue 2), 1365-1379
  9. Lütjering G, Williams JC. (2007). Titanium. 2nd ed. New York: Springer
  10. Uhlmann E, Kersting R, Klein TB, Cruz MF, Borille AV. (2015). Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp (35), 55–60
  11. Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, et al. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod (135:1559), 70
  12. I.Campbell, D.Bourell,I.Gibson (2012). Additive manufacturing: rapid prototyping comes of age, Rapid Prototyp, (18), 255–258
  13. I. Gibson, D.W. Rosen, B. Stucker (2014). Additive Manufacturing Technologies, Springer
  14. M. Attaran (2017). The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Business Horizons, (60), 677–688
  15. B.Berman, (2012). 3-Dprinting:the new industrial revolution, Business Horizons, (55), 155–162
  16. S.H.Huang,P.Liu,A.Mokasdar,L.Hou (2013). Additive manufacturing and its societal impact: a literature review, Int. J. Adv. Manuf. Technol, (67), 1191–1203.
  17. D.W.Rosen (2016). A review of synthesis methods for additive manufacturing, VirtualPhys. Prototyp. (11), 305–317.
  18. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol. 28 (2012) 1–14.
  19. W.E. Frazier (2014), Metal additive manufacturing: a review, J. Mater. Eng. Perform., (23), 1917–1928
  20. S.L.Sing,J.An,W.Y.Yeong,F.E.Wiria (2016). Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs, J. Orthop. Res., (34), 369–385
  21. J.J. Lewandowski, M. Seifi (2016). Metal additive manufacturing: a review of mechanical properties, Annu. Rev. Mater. Res., (46), 151–186
  22. W.Harun, M.Kamariah, N.Muhamad, S.Ghani, F.Ahmad, Z.Mohamed (2018). A review of powder additive manufacturing processes for metallic biomaterials, Powder Technol, (327), 128–151
  23. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, J. Zhang (2018). Additive manufacturing of metallic materials: a review, J. Mater. Eng. Perform., (27), 1–13
  24. Muhammad D. Hayatb, Harshpreet Singhb, Zhen Hea, Peng Cao. (2019), Titanium metal matrix composites: An overview. Composites Part A, (121), 418–438
  25. Dongdong Gu, Xiangwei Rao, Donghua Dai, Chenglong Ma, Lixia Xi, Kaijie Lin (2019). Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties, Additive Manufacturing, (Volume 29)
  26. Robyn L. Bradford-Viala, Fred Herman (2018). Additive Manufacturing of Carbon Nanotube Metal matrix Composites, NAVAIR Public Release 2017-848, Army Research Lab Public Release, SHERPA, Inc.
  27. Jan Frostevarg, Stephanie Robertson, Vicente Benavides, Alexander Soldatov (2017). Embedding carbon fibre structures in metal matrixes for additive manufacturing. Physics Procedia 89, 39 – 48
  28. Prashantha Kumar HG, Anthony Xavior M. (2018). Processing of Graphene/CNT-Metal Powder. Powder Technology, Edited by Alberto Adriano Cavalheiro, IntechOpen
  29. Sandvik Datasheet Osprey® Ti-6Al-4V Powder for additive manufacturing [https://www.metalpowder.sandvik/siteassets/metal-powder/datasheets/osprey-ti-6al-4v-grade-5-and-grade-23.pdf]
  30. A.Vevers, A.Kromanis (2022). TECHNOLOGICAL ASSURANCE OF Ti-6Al-4V PARTS PRODUCED BY ADDITIVE MANUFACTURING USING SELECTIVE METAL LASER SINTERING. Latvian Journal of Sciences
DOI: https://doi.org/10.2478/lpts-2023-0039 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 100 - 112
Published on: Nov 30, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 A. Vevers, A. Kromanis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.