References
- Dhara, K., & Mahapatra, D.R. (2019). Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci., 54, 12319–12357. https://doi.org/10.1007/s10853-019-03750-y
- Mohanan, P.V., Sangeetha, V., Sabareeswaran, A., Muraleedharan, V., Jithin, K., Vandana, U., & Varsha, S.B. (2021). Safety of 0.5% Hydrogen Peroxide Mist Used in the Disinfectiongateway for COVID-19. Environ. Sci. Pollut. Res. Int., 28 (47), 66602–66612. https://doi.org/10.1007/s11356-021-15164-y
- SCCP (Scientific Committee on Consumer Products). (2007). Opinion on Hydrogen Peroxide, in its Free Form or when Released, in Oral Hygiene Products and Tooth Whitening Products. Available at https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_122.pdf
- National Center for Biotechnology Information. (2022). PubChem Compound Summary for CID 784, Hydrogen Peroxide. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Hydrogen-Peroxide
- Mahaseth, T., & Kuzminov, A. (2016). Potentiation of Hydrogen Peroxide Toxicity: From Catalase Inhibition to Stable DNA-Iron Complexes. Mutat. Res.: Rev. Mutat. Res. 773, 274–281. https://doi.org/10.1016/j.mrrev.2016.08.006
- Schnabel, T., Mehling, S., Londong, J., & Springer, C. (2020). Hydrogen Peroxide-Assisted Photocatalytic Water Treatment for the Removal of Anthropogenic Trace Substances from the Effluent of Wastewater Treatment Plants. Water Sci. Technol. 82 (10), 2019–2028. https://doi.org/10.2166/wst.2020.481
- Ksibi, M. (2006). Chemical Oxidation with Hydrogen Peroxide for Domestic Wastewater Treatment. Chem. Eng. J., 119 (2–3), 161–165. https://doi.org/10.1016/j.cej.2006.03.022
- Xu, J., Zheng, X., Feng, Z., Lu, Z., Zhang, Z., Huang, W., ... & Cui, Y. (2021). Organic Wastewater Treatment by a Single-Atom Catalyst and Electrolytically Produced H2O2. Nat. Sustain., 4, 233–241. https://doi.org/10.1038/s41893-020-00635-w
- Arefin, S., Sarker, M.A.H., Islam, M.A., Harun-ur-Rashid, M., & Islam, M.N. (2017). Use of Hydrogen Peroxide (H2O2) in Raw Cow’s Milk Preservation. J. Adv. Vet. Anim. Res. 4 (4), 371–377. https://doi.org/10.5455/javar.2017.d236
- Silva, E., Oliveira, J., Silva, Y., Urbano, S., Sales, D., Moraes, E., … & Anaya, K. (2020). Lactoperoxidase System in the Dairy Industry: Challenges and Opportunities. Czech J. Food Sci. 38, 337–346. https://doi.org/10.17221/103/2020-CJFS
- Gaikwad, R., Thangaraj, P.R., & Sen, A.K. (2021). Direct and Rapid Measurement of Hydrogen Peroxide in Human Blood Using a Microfluidic Device. Sci. Rep. 11 (1), 112960 https://doi.org/10.1038/s41598-021-82623-4
- Totsuka, K., Ueta, T., Uchida, T., Roggia, M.F., Nakagawa, S., Vavvas, D.G., ... & Aihara, M. (2019). Oxidative Stress Induces Ferroptotic Cell Death in Retinal Pigment Epithelial Cells. Exp. Eye Res. 181, 316–324. https://doi.org/10.1016/j.exer.2018.08.019
- Whittemore, E.R., Loo, D.T., Watt, J.A., & Cotman, C.W. (1995). A Detailed Analysis of Hydrogen Peroxide-Inducded Cell Death in Primary Neuronal Culture. Neurosci. 67 (4), 921–932. https://doi.org/10.1016/0306-4522(95)00108-u
- Guesmi, F., Bellamine, H., & Landoulsi, A. (2018). H2O2-Induced Oxidative Stress, AChE Inhibition and Mediated Brain Injury Attenuated by Thymus algeriensis. Appl. Physiol. Nutr. Metab., 43 (12), 1275–1281. https://doi.org/10.1139/apnm-2018-0107
- Dev, S., Kumari, S., Singh, N., Bal, S.K., Seth, P., & Mukhopadhyay, C. K. (2015). Role of Extracellular Hydrogen Peroxide in Regulation of Iron Home- Ostasis Genes in Neuronal Cells: Implication in Iron Accumulation. Free Radic. Biol. Med., 86, 78–89. https://doi.org/10.1016/j.freeradbiomed.2015.05.025
- Tabner, B.J., El-Agnaf, O.M.A., Turnbull, S., German, M.J., Paleologou, K.E., Hayashi, Y., … & Allsop, D. (2005). Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. J. Biol. Chem., 280 (43), 35789–35792. https://doi.org/10.1074/jbc.C500238200
- Lee, S., Lee, Y.J., Kim, J.H., & Lee, G. (2020). Electrochemical Detection of H2O2 Released from Prostate Cancer Cells Using Pt Nanoparticle-Decorated rGO–CNT Nanocomposite-Modified Screen-Printed Carbon Electrodes. Chemosensors 8 (3), 63. https://doi.org/10.3390/chemosensors8030063
- Kolbasina, N.A., Gureev, A.P., Serzhantova, O.V., Mikhailov, A.A., Moshurov, I.P., Starkov, A.A., & Popov, V.N. (2020). Lung Cancer Increases H2O2 Concentration in the Exhaled Breath Condensate, Extent of mtDNA Damage, and mtDNA Copy Number in Buccal Mucosa. Heliyon, 6 (6), e04303. https://doi.org/10.1016/j.heliyon.2020.e04303
- Abdalla, A., Jones, W., Flint, M.S., & Patel, B.A. (2021). Bicomponent Composite Electrochemical Sensors for Sustained Monitoring of Hydrogen Peroxide in Breast Cancer Cells. Electrochim. Acta, 398, 139314. https://doi.org/10.1016/j.electacta.2021.139314
- Tavakkoli, H., Akhond, M., Ghorbankhani, G.A., & Absalan, G. (2020). Electrochemical Sensing of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes and Zein Nanoparticle Composites: Application to HepG2 Cancer Cell Detection. Microchim. Actam, 187, 105. https://doi.org/10.1007/s00604-019-4064-7
- Wu, Y., Guo, T., Qiu, Y., Lin, Y., Yao, Y., Lian, W., ... & Yang, H. (2019). An Inorganic Prodrug, Tellurium Nanowires with Enhanced ROS Generation and GSH Depletion for Selective Cancer Therapy. Chem. Sci. 10 (29), 7068–7075. https://doi.org/10.1039/c9sc01070j
- Ahmad, T., Iqbal, A., Halim, S.A., Uddin, J., Khan, A., El Deeb, S., & Al-Harrasi, A. (2022). Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H2O2) Released from Cancer Cells. Nanomaterials, 12 (9), 1475. https://doi.org/10.3390/nano12091475
- Maier, D., Laubender, E., Basavanna, A., Schumann, S., Güder, F., Urban, G.A., & Dincer, C. (2019). Toward Continuous Monitoring of Breath Biochemistry: A Paper-Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sens., 4 (11), 2945–2951. https://doi.org/10.1021/acssensors.9b01403
- Xie, J., Cheng, D., Zhou, Z., Pang, X., Liu, M., Yin, P., ... & Yao, S. (2020). Hydrogen Peroxide Sensing in Body Fluids and Tumor Cells via In situ Produced Redox couples on Two-dimensional Holey CuCo2O4 Nanosheets. Microchim. Acta, 187 (8), 469. https://doi.org/10.1007/s00604-020-04389-2
- Kakeshpour, T., Metaferia, B., Zare, R.N., & Bax, A. (2022). Quantitative Detection of Hydrogen Peroxide in Rain, Air, Exhaled Breath, and Biological Fluids by NMR Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 119 (8), e2121542119. https://doi.org/10.1073/pnas.2121542119
- Liu, H., Weng, L., & Yang, C. (2017). A Review on Nanomaterial-Based Electrochemical Sensors for H2O2, H2S and NO inside Cells or Released by Cells. Microchim. Acta, 1847, 1267–1283. https://doi.org/10.1007/s00604-017-2179-2
- Perini, J.A.d.L., Silva, B.C.e., Tonetti, A.L., & Nogueira, R.F.P. (2017). Photo-Fenton Degradation of the Pharmaceuticals Ciprofloxacin and Fluoxetine after Anaerobic Pre-treatment of Hospital Effluent. Environ. Sci. Pollut. Res., 24, 6233–6240. https://doi.org/10.1007/s11356-016-7416-4
- Al-Awadie, N.S.T., & Khudhair, A.F. (2015). Determination of Hydrogen Peroxide in Some Local Pharmaceutical Disinfectants by Continuous Flow Injection Analysis via Turbidimetric (T180o) and Scattered Light Effect at Two Opposite Positions (2N90o) Using Ayah 4SW-3D-T180o -2N90o -Solar - CFI Analyser. Iraqi J. Sci., 56 (1C), 577–592.
- Payal, A., Krishnamoorthy, S., Elumalai, A., Moses, J.A., & Anandharamakrishnan, C. (2021). A Review on Recent Developments and Applications of Nanozymes in Food Safety and Quality Analysis. Food Anal. Methods, 14, 1537–1558. https://doi.org/10.1007/s12161-021-01983-9
- Chen, Q., Lin, T., Huang, J., Chen, Y., Guo, L., & Fu, F. (2018). Colorimetric Detection of Residual Hydrogen Peroxide in Soaked Food Based on Au@Ag Nanorods. Anal. Methods, 10, 504–507. https://doi.org/10.1039/C7AY02819A
- Navale, D., & Gupta, S. (2019). Detection of Adultered Formalin and Hydrogen Peroxide in Milk. JLTEMAS, 8 (8), 19–21.
- Vasconcelos, H., Matias, A., Jorge, P., Saraiva, C., Mendes, J., Araújo, J., … & Coelho, L.C.C. (2021). Optical Biosensor for the Detection of Hydrogen Peroxide in Milk. Chem. Proc., 5 (1), 55. https://doi.org/10.3390/CSAC2021-10466
- Huang, Y., Wang, L., Chen, B., Zhang, Q., & Zhu, R. (2020). Detecting Hydrogen Peroxide Reliably in Water via Ion Chromatography: A Method Evaluation Update and Comparison in the Presence of Interfering Components. Environ. Sci.: Water Res. Technol., 6, 2396–2404. https://doi.org/10.1039/d0ew00234h
- Su, J., Zhang, S., Wang, C., Li, M., Wang, J., Su, F., & Wang, Z. (2021). A Fast and Efficient Method for Detecting H2O2 by a Dual-Locked Model Chemosensor. ACS Omega, 6 (23), 14819–14823. https://doi.org/10.1021/acsomega.1c00384
- Fong, D., & Swager, T.M. (2021). Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. J. Am. Chem. Soc., 143 (11), 4397–4404. https://doi.org/10.1021/jacs.1c00683
- Ito, E., Watabe, S., Morikawa, M., Kodama, H., Okada, R., & Miura, T. (2013). Detection of H2O2 by fluorescence correlation spectroscopy. In E. Cadenas, L. Packer (eds.), Hydrogen Peroxide and Cell Signaling, Part A (pp 135–143). Academic Press: Cambridge, Massachusetts. https://doi.org/10.1016/B978-0-12-405883-5.00008-9
- Rezende, F., Brandes, R.P., & Schröder, K. (2018). Detection of H2O2 with Fluorescent Dyes. Antioxid. Redox Signal., 29 (6), 585–602. https://doi.org/10.1089/ars.2017.7401
- Teodoro, K.B.R., Migliorini, F.L., Christinelli, W.A., & Correa, D.S. (2019). Detection of Hydrogen Peroxide (H2O2) Using a Colorimetric Sensor Based on Cellulose Nanowhiskers and Silver Nanoparticles. Carbohydrate Polymers, 212, 235–241. https://doi.org/10.1016/j.carbpol.2019.02.053
- Zhu, P., Xu, Z., Cai, L., & Chen, J. (2021). Porphyrin Iron-Grafted Mesoporous Silica Composites for Drug Delivery, Dye Degradation and Colorimetric Detection of Hydrogen Peroxide. Nanoscale Res. Lett., 16 (1), 41. https://doi.org/10.1186/s11671-021-03501-6
- Moßhammer, M., Kühl, M., & Koren, K. (2017). Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide. Chemosensors, 5, 28. https://doi.org/10.3390/chemosensors5040028
- Gričar, E., Kalcher, K., Genorio, B., & Kolar, M. (2021). Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO2 Modified Carbon Paste Electrodes. Sensors, 21, 8301. https://doi.org/10.3390/s21248301
- Gorduk, O., Gorduk, S., & Sahin, Y. (2020). Fabrication of Tetra-Substituted Copper(II) Phthalocyanine-Graphene Modified Pencil Graphite Electrode for Amperometric Detection of Hydrogen Peroxide. ECS J. Solid State Sci. Technol., 9, 06103. https://doi.org/10.1149/2162-8777/ab9c7a
- Wang, Q., Zhang, X., Chai, X., Wang, T., Cao, T., Li, Y., & Qi, W. (2021). An Electrochemical Sensor for H2O2 Based on Au Nanoparticles Embedded in UiO-66 Metal−Organic Framework Films. ACS Appl. Nano Mater., 4 (6), 6103–6110. https://doi.org/10.1021/acsanm.1c00915
- Bao-Kai, M., Mian, L., Ling-Zhi, C., Xin-Chu, W., Cai, S., & Qing, H. (2020). Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2. J. Inorg. Mater., 35 (1), 131–138. https://doi.org/10.15541/jim20190139
- Yu, Y., Pan, M., Peng, J., Hu, D., Hao, Y., & Qian, Z. (2020). A Review on Recent Advances in Hydrogen Peroxide Electrochemical Sensors for Applications in Cell Detection. Chin. Chem. Lett., 33, (9), 4133–4145. https://doi.org/10.1016/j.cclet.2022.02.045
- Portorreal-Bottier, A., Gutiérrez-Tarriño, S., Calventea, J.J., Andreu, R., Roldán, E., Oña-Burgos, P., & Olloqui-Sariego, J.L. (2022). Enzyme-like Activity of Cobalt-MOF Nanosheets for Hydrogen Peroxide Electrochemical Sensing. Sens. Actuat. B Chem., 368, 132129. https://doi.org/10.1016/j.snb.2022.132129
- Bollella, P., & Gorton, L. (2018). Enzyme Based Amperometric Biosensors. Curr. Opin. Electrochem., 10, 157–173. https://doi.org/10.1016/j.coelec.2018.06.003
- Olloqui-Sariego, J.L., Calvente, J.J., & Andreu, R. (2021). Immobilizing Redox Enzymes at Mesoporous and Nanostructured Electrodes. Curr. Opin. Electrochem., 26, 100658. https://doi.org/10.1016/j.coelec.2020.100658
- Nestor, U., Frodouard, H., & Theoneste, M. (2021). A Brief Review of How to Construct an Enzyme-Based H2O2 Sensor Involved in Nanomaterials. Adv. Nanopart., 10, 1–25. https://doi.org/10.4236/anp.2021.101001
- Sardaremelli, S., Hasanzadeh, M., & Seidi, F. (2021). Enzymatic Recognition of Hydrogen Peroxide (H2O2) in Human Plasma Samples Using HRP Immobilized on the Surface of Poly(arginine-toluidine blue)- Fe3O4 Nanoparticles Modified Polydopamine; A Novel Biosensor. J. Mol. Recognit., 34 (11), e2928. https://doi.org/10.1002/jmr.2928
- Wu, Z., Sun, L.P., Zhou, Z., Li, Q., Huo, L.H., & Zhao, H. (2018). Efficient Nonenzymatic H2O2 Biosensor Based on ZIF-67 MOF Derived Co Nanoparticles Embedded N-doped Mesoporous Carbon Composites. Sens. Actuat. B Chem., 276, 142–149. https://doi.org/10.1016/j.snb.2018.08.100
- Heydaryan, K., Kashi, M.A., Sarifi, N., & Ranjbar-Azada, M. (2020). Efficiency Improvement in Non-enzymatic H2O2 Detection Induced by the Simultaneous Synthesis of Au and Ag Nanoparticles in an RGO/Au/Fe3O4/Ag Nanocomposite. New J. Chem., 44, 9037–9045. https://doi.org/10.1039/d0nj00526f
- Rashed, M.A., Faisal, M., Harraz, F.A., Jalalah, M., Alsaiari, M., & Alsareii, S.A. (2021). A Highly Efficient Nonenzymatic Hydrogen Peroxide Electrochemical Sensor Using Mesoporous Carbon Doped ZnO Nanocomposite. J. Electrochem. Soc., 168 (2), 027512. https://doi.org/10.1149/1945-7111/abe44b
- Nishan, U., Niaz, A., Muhammad, N., Asad, M., Shah, A.-u.-H.A., Khan, N., … & Rahim, A. (2021). Non-enzymatic Colorimetric Biosensor for Hydrogen Peroxide Using Lignin-Based Silver Nanoparticles Tuned with Ionic Liquid as a Peroxidase Mimic. Arabian J. Chem., 14 (6), 103164. https://doi.org/10.1016/j.arabjc.2021.103164
- Bukkitgar, S.D., Kumar, P.S., Singh, S., Singh, V., Reddy, K.R., Sadhu, V., … & Naveen, S. (2020). Functional Nanostructured Metal Oxides and its Hybrid Electrodes – Recent Advancements in Electrochemical Biosensing Applications. Microchem. J., 159, 105522. https://doi.org/10.1016/j.microc.2020.105522
- Chang, Y.S., Li, J.H., Chen, Y.C., Ho, W.H., Song, Y.D., & Kung, C.W. (2020). Electrodeposition of Pore-Confined Cobalt in Metaleorganic Framework Thin Films toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 136276. https://doi.org/10.1016/j.electacta.2020.136276
- Agnihotri, A. S., Varghese, A., & Nidhin, M. (2021). Transition Metal Oxides in Electrochemical and Bio Sensing: A State-of-Art Review. Appl. Surf. Sci. Adv., 4, 100072. https://doi.org/10.1016/j.apsadv.2021.100072
- Tammineni, V.S., Espenti, C.S., Mutyala, S., & Arunachalam, S.V. (2021). Metal oxide-modified electrochemical sensors for toxic chemicals. In A. Pandikumar & P. Rameshkumar (eds.), Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals (pp. 19–49). Elsevier Science: Amsterdam. https://doi.org/10.1016/B978-0-12-820727-7.00009-4
- Trujillo, R.M., Barraza, D.E., Zamora, M.L., Cattani-Scholz, A., & Madrid, R.E. (2021). Nanostructures in Hydrogen Peroxide Sensing. Sensors, 21 (6), 2204. https://doi.org/10.3390/s21062204
- Alsaiari, M., Younus, A.R., Rahim, A., Alsaiari, R., & Muhammad, N. (2021). An Electrochemical Sensing Platform of Cobalt Oxide@SiO2/C Mesoporous Composite for the Selective Determination of Hydrazine in Environmental Samples. Microchem. J., 165, 106171. https://doi.org/10.1016/j.microc.2021.106171
- Kogularasu, S., Govindasamy, M., Chen, S.M., Akilarasan, M., & Mania, V. (2017). 3D Graphene Oxide-Cobalt Oxide Polyhedrons for Highly Sensitive Non-Enzymatic Electrochemical Determination of Hydrogen Peroxide. Sens. Actuat. B Chem., 253, 773–783. https://doi.org/10.1016/j.snb.2017.06.172
- Kumarage, G.W.C., & Comini, E. (2021). Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing. Chemosensors, 9 (8), 197. https://doi.org/10.3390/chemosensors9080197
- Rabani, I., Yoo, J., Kim, H.S., Lam, D.V., Hussain, S., Karuppasamy, K., & Seo, Y.S. (2021). Highly Dispersive Co3O4 Nanoparticles Incorporated into a Cellulose Nanofiber for a High-performance Flexible Supercapacitor. Nanoscale 13, 355–370. https://doi.org/doi.org/10.1039/d0nr06982e
- Fan, Y., Chen, H., Li, Y., Zheng, D.C., & Xue, F.C. (2021). PANI-Co3O4 with Excellent Specific Capacitance as an Electrode for Supercapacitors. Ceram. Int., 47 (6), 8433–8440. https://doi.org/10.1016/j.ceramint.2020.11.208
- Ibupoto, Z.H., Elhag, S., AlSalhi, M.S., Nur, O., & Willander, M. (2014). Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor. Electroanalysis, 26 (8), 1773–1781. https://doi.org/10.1002/elan.201400116
- Hussain, M., Ibupoto, Z.H., Abbasi, M.A., Nur, O., & Willander, M. (2014). Effect of Anions on the Morphology of Co3O4 Nanostructures Grown by Hydrothermal Method and their pH Sensing Application. J. Electroanal. Chem., 717–718, 78–82. https://doi.org/10.1016/j.jelechem.2014.01.011
- Kannan, P., Maiyalagan, T., Marsili, E., Ghosh, S., Guo, L., Huang, Y., … & Jönsson-Niedziolka, M. (2017). Highly Active 3-Dimensional Cobalt Oxide Nanostructures on the Flexible Carbon Substrates for Enzymeless Glucose Sensing. Analyst, 142, 4299–4307. https://doi.org/10.1039/c7an01084b
- Wang, M., Jiang, X., Liu, J., Guo, H., & Liu, C. (2015). Highly Sensitive H2O2 Sensor Based on Co3O4 Hollow Sphere Prepared via a Template-Free Method. Electrochim. Acta, 182, 613–620. https://doi.org/10.1016/j.electacta.2015.08.116
- Mai, L.N.T., Bui, Q.B., Bachc, L.G., & Nhac-Vu, H.-T. (2020). A Novel Nanohybrid of Cobalt Oxide-Sulfide Nanosheets Deposited Three-Dimensional Foam as Efficient Sensor for Hydrogen Peroxide Detection. J. Electroanal.l Chem., 857, 113757. https://doi.org/10.1016/j.jelechem.2019.113757
- Barkaoui, S., Haddaoui, M., Dhaouadi, H., Raouafi, N., & Touati, F. (2015). Hydrothermal Synthesis of Urchin-like Co3O4 Nanostructures and their Electrochemical Sensing Performance of H2O2. J. Solid State Chem., 228, 226–231. https://doi.org/10.1016/j.jssc.2015.04.043
- Shahid, M.M., Rameshkumar, P., & Huang, N.M. (2015). Morphology Dependent Electrocatalytic Properties of Hydrothermally Synthesized Cobalt Oxide Nanostructures. Ceram. Int. 41 (10), 13210–13217. https://doi.org/10.1016/j.ceramint.2015.07.098
- Kong, L., Ren, Z., Zheng, N., Du, S., Wu, J., Tang, J., & Fu, H. (2014). Interconnected 1D Co3O4 Nanowires on Reduced Grapheme Oxide for Enzymeless H2O2 Detection. Nano Res., 8 (2), 469–480. https://doi.org/10.1007/s12274-014-0617-6
- Yang, L., Xu, C., Ye, W., & Liu, W. (2015). An Electrochemical Sensor for H2O2 Based on a New Co-Metal-Organic Framework Modified Electrode. Sens. Actuat. B Chem., 215, 489–496. https://doi.org/10.1016/j.snb.2015.03.104
- Xiong, L., Zhang, Y., Wu, S., Chen, F., Lei, L., Yu, L., & Li, C. Co3O4 Nanoparticles Uniformly Dispersed in Rational Porous Carbon Nano-Boxes for Significantly Enhanced Electrocatalytic Detection of H2O2 Released from Living Cells. Int. J. Mol. Sci., 23 (7), 3799. https://doi.org/10.3390/ijms23073799
- Kannan, P., Maiyalagan, T., Pandikumar, A., Guo, L., Veerakumar, P., & Rameshkumar, P. (2019). Highly Sensitive Enzyme-free Amperometric Sensing of Hydrogen Peroxide in Real Samples Based on Co3O4 Nanocolumn Structures. Anal. Methods, 11, 2292–2302. https://doi.org/10.1039/c9ay00230h
- Atacan, K.J. (2019). CuFe2O4/Reduced Graphene Oxide Nanocomposite Decorated with Gold Nanoparticles as a New Electrochemical Sensor Material for L-cysteine Detection. Alloys Compd., 791, 391–401. https://doi.org/10.1016/j.jallcom.2019.03.303
- Demir, N., Atacan, K., Ozmen, M., & Bas, S.Z. (2020). Design of a New Electrochemical Sensing System Based on MoS2-TiO2/Reduced Graphene Oxide Nanocomposite for Paracetamol Detection. New J. Chem., 44 (27), 11759–11767. https://doi.org/10.1039/d0nj02298e
- Dhulkefl, A.J., Atacan, K., Bas, S.Z., & Ozmen, M. (2020). Ag-TiO2-Reduced Graphene Oxide Hybrid Film for Electrochemical Detection of 8-hydroxy-2’-Deoxyguanosine as an Oxidative DNA Damage Biomarker. Anal. Methods, 12 (4), 499–506. https://doi.org/10.1039/c9ay02175b
- Arefin, S., Sarker, M.A.H., Islam, M.A., Harun-ur-Rashid, M., & Islam, M.N. (2017). Use of Hydrogen Peroxide (H2O2) in Raw Cow’s Milk Preservation. J. Adv. Vet. Anim. Res., 4 (4), 371–377. https://doi.org/10.5455/javar.2017.d236
- Saha, B.K., Ali, M.Y., Chakraborty, M., Islam, Z., & Hira, A.K. (2003). Study of the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nutrition, 2 (1), 36–42. https://doi.org/10.3923/pjn.2003.36.42
- Dashe, D., Hansen, E.B., Kurtu, M.Y., Berhe, T., Eshetu, M., Hailu, Y., … & Shegaw, A. (2020). Preservation of Raw Camel Milk by Lactoperoxidase System Using Hydrogen Peroxide Producing Lactic Acid Bacteria. Open J. Anim. Sci., 10, 387–401. https://doi.org/10.4236/ojas.2020.103024
- Forman, H.J., Bernardo, A., & Davies, K.J.A. (2016). Corrigendum to “What is the Concentration of Hydrogen Peroxide in Blood and Plasma?”. Arch. Biochem. Biophys., 603, 48–53. https://doi.org/10.1016/j.abb.2016.05.005
- Atta, N.F., Gawad, S.A.A., Galal, A., Razik, A.A., & El-Gohary, A.R.M. (2021). Efficient Electrochemical Sensor for Determination of H2O2 in Human Serum Based on Nano Iron/Nickel Alloy/Carbon Nanotubes/Ionic Liquid Crystal Composite. J. Electroanal. Chem., 881, 114953. https://doi.org/10.1016/j.jelechem.2020.114953
- Das, R.K., & Golder, A.K. (2017). Co3O4 Spinel Nanoparticles Decorated Graphite Electrode: Bio-mediated Synthesis and Electrochemical H2O2 Sensing. Electrochim. Acta, 251, 415–426. https://doi.org/10.1016/j.electacta.2017.08.122
- Mihailova, I., Gerbreders, V., Krasovska, M., Sledevskis, E., Mizers, V., Bulanovs, A., & Ogurcovs, A. (2022). A Non-enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Copper Oxide Nanostructures. Beilstein J. Nanotechnol., 13, 424–436. https://doi.org/10.3762/bjnano.13.35