Libretexts. (n.a.). Isotopes of Hydrogen. Available at https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Map%3A_Inorganic_Chemistry_(Housecroft)/10%3A_Hydrogen/10.03%3A_Isotopes_ of_Hydrogen
Douglas, C., Emerson, B., Lieuwen, T., Martz, T., Steele, R., & Noble, B. (2022). NOx Emissions from Hydrogen-METHANE Fuel Blends. Strategic Energy Institute. Available at https://research.gatech.edu/sites/default/files/inline-files/gt_epri_nox_emission_h2_short_paper.pdf
Ques10. (n.a.). Fine Joules Thompson Coefficient and its Significance. Available at https://www.ques10.com/p/33100/define-joules-thompson-coefficient-and-its-signifi/
Savickis, J., Zeltins, N., & Jansons, L. (2019). Synergy between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (Problem Statement). Latvian Journal of Physics and Technical Sciences, 56 (6), 17–31. doi: 10.2478/lpts-2019-0032
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. (2020). A Hydrogen Strategy for a Climate-neutral Europe. European Commission, Brussels. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301
Conexus. (n.a.). European Hydrogen backbone Initiative Develops a Vision for Hydrogen infrastructure. Available at https://www.conexus.lv/press-releases/eiropas-udenraza-mugurkaula-iniciativasietvaros-izstradata-vizija-par-udenrazainfrastrukturu
EHB. (n.a.). European Hydrogen Backbone Grows to Meet REPowerEU’s 2030 Hydrogen Targets. Available at https://ehb.eu/newsitem/european-hydrogen-backbone-grows-to-meet-repowereu-s-2030-hydrogen-targets
Jansons, L., Bode, I., Zemite, L., Zeltins, N., Geipele, I., & Kiesners, K. (2022). Securing Sustainable Energy Future: Green Hydrogen as a Part of Gaseous Fuel Diversification Risk Management Strategy. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. doi: 10.2478/lpts-2022-0033
Cabinte of Ministers. (2022). Requirements No 567. Regulation on the requirements for the introduction and transportation of biomethane and liquefied natural gas converted into a gaseous state into the natural gas transmission and distribution system. Available at https://likumi.lv/ta/id/335532-noteikumi-par-prasibam-biometana-ungazveida-stavokli-parverstas-saskidrinatasdabasgazes-ievadisanai-un-transportesanai
Jansons, L., Zemite, L., Zeltins, N., & Geipele, I. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. doi: 10.2478/lpts-2023-0003
DNV. (n.a.). Switching a City from Natural Gas to Hydrogen. Available at https://www.dnv.com/oilgas/perspectives/switching-city-from-natural-gas-to-hydrogen.html
EHB. (2022). Five Hydrogen Supply Corridors for Europe in 2030. Executive Summary. Available at https://ehb.eu/files/downloads/EHB-Supply-corridors-presentation-ExecSum.pdf
Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Conversion and Management, 165, 602–627. https://doi.org/10.1016/j.enconman.2018.03.088
Birkitt, K., Loos-Morrey, M., Sanchez, C., & O’Sullivan, L. (2021). Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network. Inta. J. of Hydrogen Energy, 46 (23), 12290–12299. https://doi.org/10.1016/j.ijhydene.2020.09.061
Gao, Z., Xue, Y., Li, J., Xu, L., & Qiao, L. (2022). The Mechanism of the High Resistance to Hydrogen-Induced Strength Loss in Ultra-High Strength High-Entropy Alloy. Metals, 12 (6), 971. https://doi.org/10.3390/met12060971
Bosch, C., Haase, T., Liessem, A., & Schroder, J. (2010). Hic Performance of Heavy Wall Large-Diameter Pipes For Sour Service Applications under Fit-For-Service Conditions. Paper presented at the CORROSION 2010, San Antonio, Texas. Available at https://onepetro.org/NACECORR/proceedings-abstract/CORR10/All-CORR10/NACE-10280/126975
EIGUS. (2014). Hydrogen Pipeline Systems. Doc 121/14. European industrial gases Association AISBL. Available at https://www.eiga.eu/ct_documents/doc121-pdf/
Webcorr. (n.a.). Different Types of Corrosion. Recognition of Hydrogen-Induced Cracking (HIC). Available at https://www.corrosionclinic.com/types_of_corrosion/hydrogen-induced_cracking_HIC.htm
Briottel, L., Moros, I., & Lemoine, P. (2012). Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations. International Journal of Hydrogen Energy, 37 (22). https://doi.org/10.1016/j.ijhydene.2012.05.143
SwRI. (2023). SwRI Investigates Accuracy of Flow Meters Measuring Hydrogen and Natural Gas Blends. Available at https://www.swri.org/press-release/swri-investigates-accuracy-of-flow-meters-measuring-hydrogen-natural-gas-blends
The Engineering Toolbox. (n.a.). Fuels – Higher and Power Calorific Values. Available at https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html
Zhao, Y., McDonell, V., & Samuelsen, S. (2019). Influence of Hydrogen Addition to Pipeline Natural Gas on the Combustion Performance of a Cooktop Burner. The International Journal of Hydrogen Energy, 44 (23), 12239–12253. 10.1016/j. ijhydene.2019.03.100
Emersons. (n.a.). Decarbonization in Natural Gas Applications. Available at https://www.emerson.com/en-gb/automation/valves-actuators-regulators/decarbonization-in-natural-gas-applications
Emersons. (n.a.). Expertise and Integrated Solution Support for your Hydrogen Blending Applications. Available at https://www.emerson.com/documents/automation/product-brochure-hydrogen-%E2%80%93-natural-gas-blending-solutions-brochure-emerson-en-en-7838030.pdf
Linde (n.a.) Hydrogen on Tap. Available at https://www.engineering.linde.com/hiselect-for-hydrogen?utm_source=google&utm_medium=cpc&utm_campaign=EMEA-EN-SUCH+RLSAHISELECT(exact)&utm_term=natural%20hydrogen&utm_medium=paid&utm_source=Google+Ads&utm_campaign=HISELECT_ContactForm&utm_term=natural%20hydrogen&gclid=CjwKCAjwsKqoBhBPEiwALrrqiO0v0mGR9bGAbTKHNLToS_MG1CkuZYMshmuVEBG_5lvZcKE3JLsJERoCJXcQAvD_BwE
IGRC. (2017). Using the Natural Gas Network for Transporting Hydrogen – Ten Years of Experience. Available at https://arkiv.dgc.dk/sites/default/files/filer/publikationer/C1703_IGRC2017_iskov.pdf
Jackson, C., Smith, G., & Kucernak, A.R. (2023). Deblending and Purification of Hydrogen from Natural Gas Mixtures Using the Electrochemical Hydrogen Pump. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.05.065