Have a personal or library account? Click to login

Blending Hydrogen With Natural Gas/Biomethane and Transportation in Existing Gas Networks

Open Access
|Sep 2023

References

  1. Origin of Element (n.a.). Available at https://www2.lbl.gov/abc/wallchart/chapters/10/0.html
  2. Isotopes of Hydrogen (n.a.). Available at https://www2.lbl.gov/abc/wallchart/chapters/02/3.html
  3. Libretexts. (n.a.). Isotopes of Hydrogen. Available at https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Map%3A_Inorganic_Chemistry_(Housecroft)/10%3A_Hydrogen/10.03%3A_Isotopes_ of_Hydrogen
  4. Rhodes, R. (n.a.). Explosive Lessons in Hydrogen Safety. Available at https://www.nasa.gov/pdf/513855main_ASK_41s_explosive.pdf
  5. Hydrogen Tools. (n.a.). Hydrogen Flames. Available at https://h2tools.org/hydrogen-flames
  6. Douglas, C., Emerson, B., Lieuwen, T., Martz, T., Steele, R., & Noble, B. (2022). NOx Emissions from Hydrogen-METHANE Fuel Blends. Strategic Energy Institute. Available at https://research.gatech.edu/sites/default/files/inline-files/gt_epri_nox_emission_h2_short_paper.pdf
  7. US Department of Energy. (n.a.). Hydrogen Production and Distribution. Available at https://afdc.energy.gov/fuels/hydrogen_production.html
  8. Ques10. (n.a.). Fine Joules Thompson Coefficient and its Significance. Available at https://www.ques10.com/p/33100/define-joules-thompson-coefficient-and-its-signifi/
  9. EC. (n.a.). Hydrogen. Available at https://energy.ec.europa.eu/topics/energy-systems-integration/hydrogen_en
  10. Savickis, J., Zeltins, N., & Jansons, L. (2019). Synergy between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (Problem Statement). Latvian Journal of Physics and Technical Sciences, 56 (6), 17–31. doi: 10.2478/lpts-2019-0032
  11. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. (2020). A Hydrogen Strategy for a Climate-neutral Europe. European Commission, Brussels. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301
  12. Conexus. (n.a.). European Hydrogen backbone Initiative Develops a Vision for Hydrogen infrastructure. Available at https://www.conexus.lv/press-releases/eiropas-udenraza-mugurkaula-iniciativasietvaros-izstradata-vizija-par-udenrazainfrastrukturu
  13. EHB. (n.a.). European Hydrogen Backbone Grows to Meet REPowerEU’s 2030 Hydrogen Targets. Available at https://ehb.eu/newsitem/european-hydrogen-backbone-grows-to-meet-repowereu-s-2030-hydrogen-targets
  14. Jansons, L., Bode, I., Zemite, L., Zeltins, N., Geipele, I., & Kiesners, K. (2022). Securing Sustainable Energy Future: Green Hydrogen as a Part of Gaseous Fuel Diversification Risk Management Strategy. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. doi: 10.2478/lpts-2022-0033
  15. Cabinte of Ministers. (2022). Requirements No 567. Regulation on the requirements for the introduction and transportation of biomethane and liquefied natural gas converted into a gaseous state into the natural gas transmission and distribution system. Available at https://likumi.lv/ta/id/335532-noteikumi-par-prasibam-biometana-ungazveida-stavokli-parverstas-saskidrinatasdabasgazes-ievadisanai-un-transportesanai
  16. Jansons, L., Zemite, L., Zeltins, N., & Geipele, I. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. doi: 10.2478/lpts-2023-0003
  17. DNV. (n.a.). Switching a City from Natural Gas to Hydrogen. Available at https://www.dnv.com/oilgas/perspectives/switching-city-from-natural-gas-to-hydrogen.html
  18. EC. (2023). European Clean Hydrogen Alliance Roadmap on Standardisation. Available at https://ec.europa.eu/docsroom/documents/53721
  19. EHB. (2022). Five Hydrogen Supply Corridors for Europe in 2030. Executive Summary. Available at https://ehb.eu/files/downloads/EHB-Supply-corridors-presentation-ExecSum.pdf
  20. Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Conversion and Management, 165, 602–627. https://doi.org/10.1016/j.enconman.2018.03.088
  21. Birkitt, K., Loos-Morrey, M., Sanchez, C., & O’Sullivan, L. (2021). Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network. Inta. J. of Hydrogen Energy, 46 (23), 12290–12299. https://doi.org/10.1016/j.ijhydene.2020.09.061
  22. Gao, Z., Xue, Y., Li, J., Xu, L., & Qiao, L. (2022). The Mechanism of the High Resistance to Hydrogen-Induced Strength Loss in Ultra-High Strength High-Entropy Alloy. Metals, 12 (6), 971. https://doi.org/10.3390/met12060971
  23. Bosch, C., Haase, T., Liessem, A., & Schroder, J. (2010). Hic Performance of Heavy Wall Large-Diameter Pipes For Sour Service Applications under Fit-For-Service Conditions. Paper presented at the CORROSION 2010, San Antonio, Texas. Available at https://onepetro.org/NACECORR/proceedings-abstract/CORR10/All-CORR10/NACE-10280/126975
  24. EIGUS. (2014). Hydrogen Pipeline Systems. Doc 121/14. European industrial gases Association AISBL. Available at https://www.eiga.eu/ct_documents/doc121-pdf/
  25. Webcorr. (n.a.). Different Types of Corrosion. Recognition of Hydrogen-Induced Cracking (HIC). Available at https://www.corrosionclinic.com/types_of_corrosion/hydrogen-induced_cracking_HIC.htm
  26. Briottel, L., Moros, I., & Lemoine, P. (2012). Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations. International Journal of Hydrogen Energy, 37 (22). https://doi.org/10.1016/j.ijhydene.2012.05.143
  27. Ronevich, A.J., Song, E.J., Somerday, B.P., & Marchi, C.W.S. (2021). Hydrogen-Assisted Fracture Resistance of Pipeline Welds in Gaseous Hydrogen. International Journal of Hydrogen Energy, 46 (10), 7601–7614. https://doi.org/10.1016/j.ijhydene.2020.11.239
  28. SwRI. (2023). SwRI Investigates Accuracy of Flow Meters Measuring Hydrogen and Natural Gas Blends. Available at https://www.swri.org/press-release/swri-investigates-accuracy-of-flow-meters-measuring-hydrogen-natural-gas-blends
  29. The Engineering Toolbox. (n.a.). Fuels – Higher and Power Calorific Values. Available at https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html
  30. Zhao, Y., McDonell, V., & Samuelsen, S. (2019). Influence of Hydrogen Addition to Pipeline Natural Gas on the Combustion Performance of a Cooktop Burner. The International Journal of Hydrogen Energy, 44 (23), 12239–12253. 10.1016/j. ijhydene.2019.03.100
  31. Emersons. (n.a.). Decarbonization in Natural Gas Applications. Available at https://www.emerson.com/en-gb/automation/valves-actuators-regulators/decarbonization-in-natural-gas-applications
  32. JLS International. (n.a.). Gas Mixer and Flow Meter. Available at https://www.jls-europe.de/products/static-mixer/gas-mixer.html
  33. Emersons. (n.a.). Expertise and Integrated Solution Support for your Hydrogen Blending Applications. Available at https://www.emerson.com/documents/automation/product-brochure-hydrogen-%E2%80%93-natural-gas-blending-solutions-brochure-emerson-en-en-7838030.pdf
  34. Linde (n.a.) Hydrogen on Tap. Available at https://www.engineering.linde.com/hiselect-for-hydrogen?utm_source=google&utm_medium=cpc&utm_campaign=EMEA-EN-SUCH+RLSAHISELECT(exact)&utm_term=natural%20hydrogen&utm_medium=paid&utm_source=Google+Ads&utm_campaign=HISELECT_ContactForm&utm_term=natural%20hydrogen&gclid=CjwKCAjwsKqoBhBPEiwALrrqiO0v0mGR9bGAbTKHNLToS_MG1CkuZYMshmuVEBG_5lvZcKE3JLsJERoCJXcQAvD_BwE
  35. IGRC. (2017). Using the Natural Gas Network for Transporting Hydrogen – Ten Years of Experience. Available at https://arkiv.dgc.dk/sites/default/files/filer/publikationer/C1703_IGRC2017_iskov.pdf
  36. Honeywell. (2023). Hydrogen Grid Injection & Point of Use (de -) blending.
  37. Jackson, C., Smith, G., & Kucernak, A.R. (2023). Deblending and Purification of Hydrogen from Natural Gas Mixtures Using the Electrochemical Hydrogen Pump. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.05.065
  38. Shao, L., Low, B.T., Chung, T.-S., & Greenberg, A.R. (2009). Polymeric Membranes for the Hydrogen Economy: Contemporary Approaches and Prospects for the Future. Journal of Membrane Science, 327 (1–2), 18–31. https://doi.org/10.1016/j.memsci.2008.11.019
DOI: https://doi.org/10.2478/lpts-2023-0030 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 43 - 55
Published on: Sep 29, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 L. Zemite, L. Jansons, N. Zeltins, S. Lappuke, I. Bode, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.