Have a personal or library account? Click to login

Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network

Open Access
|Aug 2023

References

  1. Bhatia, R., & Bhatia, S. (2020). Responsiveness of FWM with Fraction of Planck HOD Parameters in Presence of Intensity Dependent Phase Matching Factor in Optical Transmission. International Conference on Intelligent Engineering and Management (ICIEM), 142–147. https://doi.org/10.1109/ICIEM48762.2020.9160075.
  2. Olonkins, S., Spolitis, S., Lyashuk, I., & Bobrovs, V. (2014). Cost Effective WDM-AON with Multicarrier Source Based on Dual-Pump FOPA. In 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), (pp. 23–28). October 2014, Russia.
  3. Ivaniga, P., & Ivaniga, T. (2020). Mitigation of Non-Linear Four-Wave Mixing Phenomenon in a Fully Optical Communication System. Telkomnika, 18, 2878–2885. http://dx.doi.org/10.12928/telkomnika.v18i6.16136.
  4. Keiser, G. (2008). Optical Fibre Communications (4th ed.). Tata McGrawHill Publishing Co. Ltd.
  5. Sharma, N., Singh, H., & Singh, P. (2020). Mitigation of FWM in the Fibre Optic DWDM System by using Different Modulation Tech-niques and Optical Filters. 5th International Conference on Communication and Electronics Systems (ICCES), (pp. 343–348). Coimbatore, India, 2020. https://doi.org/10.1109/ICCES48766.2020.9138080.
  6. Selvamani, A., & Sabapathi, T. (2011). Suppression of Four Wave Mixing by Optical Phase Conjugation in DWDM Fibre Optic Link. Electronics and Control Engineering, 2011, 95–99. 10.1109/ICONRAEeCE.2011.6129821.
  7. Anashkina, E.A., Marisova, M.P., Andrianov, A.V., Akhmedzhanov, R.A., Murnieks, R., Tokman, M.D., … & Bobrovs, V. (2020). Microsphere-Based Optical Frequency Comb Generator for 200 GHz Spaced WDM Data Transmission System. Photonics, 7 (72), 1–16. https://doi.org/10.3390/photonics7030072.
  8. Lin, G., Diallo, S., & Chembo Y. K. (2015). Optical Kerr frequency combs: Towards versatile spectral ranges and applications. In 17th International Conference on Transparent Optical Networks (ICTON), (pp. 1–4). Budapest, 2015. DOI: 10.1109/ICTON.2015.7193612.
  9. Del’Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., & Kippenberg, T. J. (2007). Optical Frequency Comb Generation from a Monolithic Microresonator. Nature, 450, 1214–1217. https://doi.org/10.1038/nature06401.
  10. Liopis, O., Merrer, P. H., Bouchier, A., Saleh, K., & Cibiel, G. (2010). High-Q Optical Resonators: Characterization and Application to Stabilization of Lasers and High Spectral Purity Oscillators. Proceeding of SPIE, (pp. 10). San Francisco, 2010. https://doi.org/10.1117/12.847164.
  11. Liang, W., Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D., & Maleki, L. (2011). Generation of Near-Infrared Frequency Combs from a MgF2 Whispering Gallery Mode Resonator. Opt. Lett., 36. https://doi.org/10.1364/OL.36.002290.
  12. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Solomatine, I., Seidel, D., & Maleki, L. (2008). Optical Combs with a Crystalline Whispering Gallery Mode Resonator. Phys. Rev. Lett., 101, 093902. https://doi.org/10.1103/PhysRevLett.101.093902.
  13. Savchenkov, A. A., Matsko, A. B., & Maleki, L. (2016). On Frequency Combs in Monolithic Resonators. Nanophotonics, 5, 363–391. https://doi.org/10.1515/nanoph-2016-0031.
  14. Braunfelds, J., Murnieks, R., Salgals, T., Brice, I., Sharashidze, T., Lyashuk, I., … & Bobrovs, V. (2020). Frequency Comb Generation in WGM Microsphere Based Generators for Telecommunication Applications. Quantum Electronics, 50, 1043. https://doi.org/10.1070/QEL17409.
  15. Anashkina, E.A., & Andrianov, A.V. (2021). Kerr-Raman Optical Frequency Combs in Silica Microsphere Pumped near Zero Dispersion Wavelength. IEEE Access, 9, 6729–6734. https://doi.org/10.1109/ACCESS.2021.3049183.
  16. Andrianov, A.V., & Anashkina, E.A. Single-Mode Silica Microsphere Raman Laser Tunable in the U-Band and beyond. Results Phys., 17, 103084, 1–5. https://doi.org/10.1016/j.rinp.2020.103084.
  17. Antikainen, A., & Agrawal, G. P. (2015). Dual-Pump Frequency Comb Generation in Normally Dispersive Optical Fibres. J. Opt. Soc. Am. B, 32, 1705–1711. https://doi.org/10.1364/JOSAB.32.001705.
  18. Myslivets, E., Kuo, B. P., Alic, N., & Radic, S. (2012). Generation of Wideband Frequency Combs by Continuous-Wave Seeding of Multi-Stage Mixers with Synthesized Dispersion. Opt. Express, 20, 3331–3344. https://doi.org/10.1364/OE.20.003331.
  19. Hänsel, W., Hoogland, H., Giunta, M., Schmid, S., Steinmetz, T., Doubek, R., … & Holzwarth R. (2017). All Polarization-Maintaining Fibre Laser Architecture for Robust Femtosecond Pulse Generation. Appl. Phys. B, 123, 1–6. https://doi.org/10.1007/s00340-016-6598-2.
  20. Ataie, V., Myslivets, E., Kuo, B. P.-P., Alic, N., & Radic, S. (2014). Spectrally Equalized Frequency Comb Generation in Multistage Parametric Mixer with Nonlinear Pulse Shaping. J. Light. Technol., 32, 840–846. https://doi.org/10.1109/JLT.2013.2287852.
  21. ITU-T Recommendation G 694.1. (2002). Spectral Grids for WDM Applications: DWDM Frequency Grid. International Telecommunication Union, Telecommunication standardization sector of ITU, pp. 1–7, Geneva, Switzerland,.
  22. Bohnert, K., Frank, A., Yang, L., Gu, X., & Müller, G. M. (2019). Polarimetric Fibre-Optic Current Sensor With Integrated-Optic Polarization Splitter. J. Light. Technol., 37, 3672–3678. https://doi.org/10.1109/JLT.2019.2919387.
  23. Giurgiutiu, V. (2018). Comprehensive Composite Materials. II Elsevier. ISBN 9780081005347.
  24. McKnight, M., Agcayazi, T., Ghosh, T., & Bozkurt, A. (2018). Wearable Technology in Medicine and Health Care. Academic Press. ISBN 9780128118108.
  25. Giurgiutiu, V. (2020). Composites Science and Engineering, Polymer Composites in the Aerospace Industry (2nd ed.). Woodhead Publishing. ISBN 9780081026793.
  26. Senkans, U., Braunfelds, J., Lyashuk, I., Porins, J., Spolitis, S., & Bobrovs, V. (2019). Research on FBG-Based Sensor Networks and Their Coexistence with Fibre Optical Transmission Systems. Journal of Sensors, 2019, 1–13. https://doi.org/10.1155/2019/6459387.
  27. Kim, M.H., & Lee, J.M. (2014). Woodhead Publishing Series in Electronic and Optical Materials, Sensor Technologies for Civil Infrastructures. Woodhead Publishing, 56. ISBN 9781782422426.
  28. Hayes, S.A., Swait, T.J., & Lafferty, A.D. (2015). Composites Science and Engineering, Recent Advances in Smart Self-healing Polymers and Composites. Woodhead Publishing. ISBN 9781782422808.
  29. Braunfelds, J., Senkans, U., Skels, P., Janeliukstis, R., Salgals, T., Redka, D., … & Bobrovs, V. (2021). FBG-Based Sensing for Structural Health Monitoring of Road Infrastructure. Journal of Sensors, 1–11. https://doi.org/10.1155/2021/8850368.
  30. Alamandala, S., Sai Prasad, R.L.N., Pancharathi, R., Pavan, V.D.R., & Kishore, P. (2021). Study on Bridge Weigh in Motion (BWIM) System for Measuring the Vehicle Parameters Based on Strain Measurement Using FBG Sensors. Opt. Fibre Technol., 61, 102440, 1–9. https://doi.org/10.1016/j.yofte.2020.102440.
  31. Taheri, S. (2019). A Review on Five Key Sensors for Monitoring of Concrete Structures. Construction and Building Materials, 204, 492–509. https://doi.org/10.1016/j.conbuildmat.2019.01.172.
  32. Peters, K.J., & Inaudi, D. (2014). Electronic and Optical Materials, Sensor Technologies for Civil Infrastructures. Woodhead Publishing, 55. ISBN 9780857094322.
  33. Ansari, F. (2009). Civil and Structural Engineering, Structural Health Monitoring of Civil Infrastructure Systems. Woodhead Publishing, ISBN 9781845693923.
  34. Baldwin, C. (2018). 8-Fibre Optic Sensors in the Oil and Gas Industry: Current and Future Applications. Opto-Mechanical Fibre Optic Sensors, Butterworth-Heinemann. ISBN 9780128031315.
  35. Vadgama, P. (2001). Biomedical Sensors: Materials. Encyclopedia of Materials: Science and Technology, Elsevier. ISBN 9780080431529.
  36. Tosi, D., Poeggel, S., Iordachita, I., & Schena E. (2018). 11-Fibre Optic Sensors for Biomedical Applications. Opto-Mechanical Fibre Optic Sensors, Butterworth-Heinemann. ISBN 9780128031315.
  37. Broughton, W. (2012). Welding and Other Joining Technologies, Adhesives in Marine Engineering. Woodhead Publishing. ISBN 9781845694524.
  38. Subramanian, R., Zhu, C.L., Zhao, H., & Li, H.P. (2018). Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fibre Gratings. IEEE Photonics Technol. Lett., 30, 327–330. https://doi.org/10.1109/LPT.2017.2787157.
  39. Velazquez-Gonzalez, J.S., Monzon-Hernandez, D., Martinez-Pinon, F., & Hernandez-Romano, I. (2017). Simultaneous Measurement of Refractive Index and Temperature Using a SPR-Based Fibre Optic Sensor. Sens. Actuat. B-Chem., 242, 912–920. https://doi.org/10.1016/j.snb.2016.09.164.
  40. Gu, J., Kwon, D., Ahn, J., & Park, I. (2019). Strain sensor based on optical intensity change through the carbon nanotube embedded elastomer. In 20th International Conference on Solid-State Sensors “Actuators and Microsystems & Eurosensors XXXIII” (TRANSDUCERS & EUROSENSORS XXXIII), (pp. 1716–1719). Berlin, Germany, 2019. https://doi.org/10.1109/TRANSDUCERS.2019.8808701.
  41. Madan, A., Liu, O., Jiang, W., Wang, Y., Shum, P. P., & Hao, J. (2020). Carbon-steel tube surface mounted FBG sensors under high-temperature environment, part I: Polyimide coated and femtosecond laser written. In IEEE 5th Optoelectronics Global Conference (OGC), (pp. 125–129). Shenzhen, China, 2020. https://doi.org/10.1109/OGC50007.2020.9260462.
  42. Ran, Z., Liu, S., Liu, Q., Wang, Y., Bao, H., & Rao, Y. (2015). Novel High-Temperature Fibre-Optic Pressure Sensor Based on Etched PCF F-P Interferometer Micromachined by a 157-nm Laser. IEEE Sens. J., 15, 3955–3958. https://doi.org/10.1109/JSEN.2014.2371243.
  43. Khadour, A., &Waeytens, J. (2018). Civil and Structural Engineering, Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. Woodhead Publishing. ISBN 9780081021811.
  44. Mahawar, N., & Khunteta, A. (2019). Design and performance analysis of WDM optical Communication system with EDFA-DCF and FBG for dispersion compensation using 8x5 Gbps data rate. In International Conference on Communication and Electronics Systems (ICCES), (pp. 431–435). Coimbatore, India, 2019. https://doi.org/10.1109/ICCES45898.2019.9002236.
  45. Götten, M., Lochmann, S., Ahrens, A., Lindner, E., Vlekken, J., & Van Roosbroeck, J. (2020). 4000 Serial FBG Sensors Interrogated with a Hybrid CDM-WDM System. IEEE Sens. J., 2020, 1–4. https://doi.org/10.1109/SENSORS47125.2020.9278764.
  46. Synopsys. (n.d.). Synopsys OptSim Product Overview. Available at https://www.synopsys.com/photonic-solutions/rsoft-system-design-tools/system-network-optsim.html
  47. Xia, L., Cheng, R., Li, W., & Liu, D. (2015). Identical FBG-Based Quasi-Distributed Sensing by Monitoring the Microwave Responses. IEEE Photon. Technol. Lett., 27, 323–325. https://doi.org/10.1109/LPT.2014.2370650.
  48. Dwivedi, K. M., Trivedi, G., & Khijwania, S. K. (2020). Theoretical study and optimization of apodized fibre Bragg grating for single and quasi-distributed structural health monitoring applications. In 30th International Conference Radioelektronika (RADIOELEKTRONIKA), (pp. 1–6). Bratislava, Slovakia, 2020. https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092399.
  49. Moon, H., Kwak, S., Im, K., Kim, J., & Kim, S. (2019). Wavelength Interrogation System for Quasi-Distributed Fibre Bragg Grating Temperature Sensors Based on a 50-GHz Array Waveguide Grating. IEEE Sens. J., 19, 2598–2604. https://doi.org/10.1109/JSEN.2018.2889853.
  50. Bobrovs, V., Spolitis, S., & Ivanovs, G. (2013). Extended Reach Spectrum-Sliced Passive Optical Access Network. International Journal of Physical Sciences, 8 (13), 537–548. https://doi.org/10.5897/IJPS2013.3868.
  51. Tsai, W-S., Lu, H.H., Li, C.-Y., Lu, T.-C., Liao, C.-H., Chu, C.-A., &Peng, P.-C. (2015). A 20-m/40-Gb/s 1550-nm DFB LD-Based FSO Link. IEEE Photonics J., 2015 (7), 1–7, doi: 10.1109/JPHOT.2015.2506172.
  52. Ledentsov, Jr. N., Agustin, M., Chorchos, L., Kropp, J.-R., Shchukin, V. A., Kalosha, V. P., … & Ledentsov, N. N. (2019). Energy Efficient 850-nm VCSEL Based Optical Transmitter and Receiver Link Capable of 56 Gbit/s NRZ Operation. Vertical-Cavity Surface-Emitting Lasers XXIII, 109380J, 1–8. https://doi.org/10.1117/12.2509916.
  53. Elayoubi, K., Rissons, A., & Belmonte, A. (2018). Optical Test Bench Experiments for 1-Tb/s Satellite Feeder Uplinks. Laser Communication and Propagation through the Atmosphere and Oceans VII, 1077006, 1–11. https://doi.org/10.1117/12.2317728
DOI: https://doi.org/10.2478/lpts-2023-0025 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 61 - 76
Published on: Aug 8, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 J. Braunfelds, K. Zvirbule, U. Senkans, R. Murnieks, I. Lyashuk, J. Porins, S. Spolitis, V. Bobrovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.