References
- IRENA. (n.d.). Policies for Green Hydrogen. Available at https://www.irena.org/Energy-Transition/Policy/Policies-for-green-hydrogen
- Peschel. A. (2020). Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel Cells, 20 (4), 385–393.
- Fragiacomo, P., & Genovese, M. (2020). Developing a Mathematical Tool for Hydrogen Production, Compression and Storage. International Journal of Hydrogen Energy, 45 (35), 7685–7701.
- European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. A Hydrogen Strategy for a Climate-Neutral Europe. Brussels, 8.7.2020. COM (2020) 301 final.
- IEA. (2021). Global Hydrogen Review 2021. IEA, Paris. Available at https://www.iea.org/reports/global-hydrogen-review-2021.
- Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. International Journal of Hydrogen Energy, 46 (41), 21261–21273.
- Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2019). Review of the Current Technologies and Performances of Hydrogen Compression for Stationary and Automotive Applications. Renewable and Sustainable Energy Reviews, 102, 150–170.
- IEA. (2020). Global Installed Electrolysis Capacity by Region, 2015–2020. IEA, Paris. Available at https://www.iea.org/data-and-statistics/charts/global-installed-electrolysis-capacity-by-region-2015-2020.
- Techcrunch. (n.d.). Volvo AB and Daimler Trucks Team up in a Hydrogen Fuel Cell Joint Venture. Available at https://techcrunch.com/2021/05/03/volvo-ag-and-daimler-trucks-team-up-in-hydrogen-fuel-cell-joint-venture/
- Toyota. (nd.). Toyota Mirai 2022 Edition. Available at https://www.toyota.com/mirai/
- Bezrukovs, V., Bezrukovs, Vl., Konuhova, M., Bezrukovs, D., & Berzins, A. (2022). Hydrogen Hydraulic Compression System for Refuelling Stations. Latvian Journal of Physics and Technical Sciences, 59 (3), 96–105. DOI: 10.2478/lpts-2022-0028.
- Zou, J., Han, N., Yan, J., Feng, Q., Wang, Y., Zhao, Z., ...& Wang, H. (2020). Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochem. Energ. Rev., 3, 690–729.
- Humphrey, H.A. (1909). An Internal-Combustion Pump and Other Applications of a New Principle. Proc. Inst. Mech. Eng., 1123.
- Joyce, N.G. (1984). The Humphrey pump – An internal combustion pump. In Proceedings of the Conference on Small Engines and their Fuels in Developing Countries, (pp. 31–44). Reading, Berkshire, England.
- Van de Ven, J.D., & Li, P.Y. (2009). Liquid Piston Gas Compression. Applied Energy, 86 (10), 2183–2191. doi:10.1016/j.apenergy.2008.12.001
- Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Orlova, S., Konuhova, M., Berzins, A., ... & Pranskus P. (2021). Hydrogen Hydraulic Compression Device. WO2023017306, 16.03.2023.
- Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. LVP2022000071, 31 August 2022.
- Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. PCT/IB2022/058904, 21 September 2022.
- Enapter. (n.d.). AEM Electrolyser EL 4.0, Datasheet. Available at https://handbook.enapter.com/electrolyser/el40/downloads/Enapter_Datasheet_EL40_EN.pdf