Have a personal or library account? Click to login

Evaluation of Heat Pump Operation in a Single-Family House

Open Access
|May 2023

References

  1. Energy Efficiency. (2022). Why the Transition to Energy Efficient and Electrified Buildings Strengthens Europe’s Economy. Available at https://www.ien.eu/article/why-the-transition-to-energy-efficient-andelectrified-buildings-strengthens-europes-economy/
  2. Kundziņa, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. doi: 10.2478/lpts-2022-0045.
  3. Borodinecs, A., Zemitis, J., Dobelis, M., Kalinka, M., Prozuments, A., & Šteinerte, K. (2017). ModularRretrofitting Solution of Buildings Based on 3D Scanning. Procedia Eng, 205, 160–166. doi: 10.1016/j. proeng.2017.09.948.
  4. Zemitis, J., & Terekh, M. (2018). Management of Energy Efficient Measures by Buildings’ Thermorenovation. MATEC Web of Conferences, 245. doi: 10.1051/matecconf/201824506003.
  5. Pukite, I., Grekis, A., Geipele, I., & Zeltins, N. (2017). Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia. Latvian Journal of Physics and Technical Sciences, 54 (4), 3–14. doi: 10.1515/lpts-2017-0022.
  6. Borodinecs, A., Prozuments, A., Zajacs, A., & Zemitis, J. (2019). Retrofitting of Fire Stations in Cold Climate Regions. Magazine of Civil Engineering, 90 (6), 85–92. doi: 10.18720/MCE.90.8.
  7. Zemitis, J., Bogdanovics, R., & Bogdanovica, S. (2021). The Study of Co2 Concentration in a Classroom during the Covid-19 Safety Measures. E3S Web of Conferences, 246. doi: 10.1051/e3sconf/202124601004.
  8. IEA. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency.
  9. European Parliament and the Council of the European Union. (2018). Consolidated text: Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Official Journal of the European Union.
  10. Zemitis, J., Borodinecs, A., Geikins, A., Kalamees, T., & Kuusk, K. (2016). Ventilation System Design in Three European Geo Cluster. Energy Procedia, 96. doi: 10.1016/j.egypro.2016.09.151.
  11. European Comission. (n.d.). Nearly zero-energy buildings. Available at https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en
  12. Attia, S., Kurnitski, J., Kosiński, P., Borodiņecs, A., Deme Belafi, Z., … & Banionis, K. (2022). Overview and Future Challenges of Nearly Zero-Energy Building (nZEB) Design in Eastern Europe. Energy Build, 276. doi:10.1016/j. enbuild.2022.112165.
  13. Ayou, D.S., Wardhana, M.F.V., & Coronas, A. (2023). Performance Analysis of a Reversible Water/LiBr Absorption Heat Pump Connected to District Heating Network in Warm and Cold Climates. Energy, 268. doi: 10.1016/J. ENERGY.2023.126679.
  14. Sandvall, A., & Karlsson, K.B. (2023). Energy System and Cost Impacts of Heat Supply to Low-Energy Buildings in Sweden. Energy, 268. doi: 10.1016/J. ENERGY.2023.126743.
  15. Lu, Z., & Ziviani, D. (2022). Operating Cost Comparison of State-of-the-Art Heat Pumps in Residential Buildings across the United States. Energy Build, 277. doi: 10.1016/J.ENBUILD.2022.112553.
  16. Sadeghi, H., Ijaz, A., & Singh, R.M. (2022). Current Status of Heat Pumps in Norway and Analysis of their Performance and Payback Time. Sustainable Energy Technologies and Assessments, 54. doi: 10.1016/J.SETA.2022.102829.
  17. Panasonic. (2018). New Aquarea Range 2017–2018. High-Efficiency Heat Pump Technology. Available at https://www.aircon.panasonic.eu/uploads/TR/clima_catalogues/EU%20AQUAREA%2028P%2017%20LR.pdf
  18. Milanowski, M., Cazorla-Marín, A., & Montagud-Montalvá, C. (2022). Energy Analysis and Cost-Effective Design Solutions for a Dual-Source Heat Pump System in Representative Climates in Europe. Energies (Basel), 15 (22), p. 8460. doi: 10.3390/EN15228460.
  19. Ministru kabinets. (2021). Ēku energoefektivitātes aprēķina metodes un ēku energosertifikācijas noteikumi. Latvijas Vēstnesis 2021/72.4.
  20. Marijanovic, Z., Theile, P., & Czock, B.H. (2022). Value of Short-Term Heating System Flexibility – A Case Study for Residential Heat Pumps on the German Intraday Market. Energy, 249, 123664. doi: 10.1016/J.ENERGY.2022.123664.
  21. Nageler, P., Schweiger, G., Pichler, M., Brandl, D., Mach, T., Heimrath, R., … & Hochenauer, C. (2018). Validation of Dynamic Building Energy Simulation Tools Based on a Real Test-Box with Thermally Activated Building Systems (TABS). Energy Build, 168, 42–55. doi: 10.1016/J. ENBUILD.2018.03.025.
  22. Ferrantelli, A., Fadejev, J., & Kurnitski, J. (2019). Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions. Energies (Basel), 12 (5). doi: 10.3390/en12050770.
  23. Englund, J. S., Cehlin, M., Akander, J., & Moshfegh, B. (2020). Measured and Simulated Energy Use in a Secondary School Building in Sweden - A Case Study of Validation, Airing, and Occupancy Behaviour. Energies (Basel), 13 (9). doi: 10.3390/EN13092325.
  24. Taebnia, M., Toomla, S., Leppä, L., & Kurnitski, J. (2020). Developing Energy Calculation Methodology and Calculation Tool Validations: Application in Air-Heated Ice Rink Arenas. Energy Build, 226. doi: 10.1016/J.ENBUILD.2020.110389.
  25. Catto Lucchino, E., Gelesz, A., Skeie, K., Gennaro, G., Reith, A., Serra, V., & Goia, F. (2021). Modelling double skin façades (DSFs) in Whole-Building Energy Simulation Tools: Validation and Inter-Software Comparison of a Mechanically Ventilated Single-Story DSF. Build Environ., 199. doi: 10.1016/J. BUILDENV.2021.107906.
  26. Mathes, R., Junker, H., Wunsch, M., Hemmatabady, H., Kabus, F., & Tilsen, R. (2022). Geothermal Heating Plant Schwerin: Realization of a Cascaded Large-Scale Heat Pump System for the Utilization of a Medium-Depth Geothermal System, European Geothermal Congress 2022, Berlin, Germany | 17-21 October 2022, pp. 1–6.
  27. Zirngibl, J. (2020). Heat Pump Standard EN 15316-4-2 – From Compliance to Real Consumption. REHVA Journal: 06/2020 5–9. https://www.rehva.eu/rehva-journal/chapter/heat-pump-standard-en-15316-4-2-from-compliance-to-real-consumption-1
DOI: https://doi.org/10.2478/lpts-2023-0019 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 85 - 98
Published on: May 30, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 A. Zajacs, K. Lebedeva, R. Bogdanovičs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.