References
- Energy Efficiency. (2022). Why the Transition to Energy Efficient and Electrified Buildings Strengthens Europe’s Economy. Available at https://www.ien.eu/article/why-the-transition-to-energy-efficient-andelectrified-buildings-strengthens-europes-economy/
- Kundziņa, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. doi: 10.2478/lpts-2022-0045.
- Borodinecs, A., Zemitis, J., Dobelis, M., Kalinka, M., Prozuments, A., & Šteinerte, K. (2017). ModularRretrofitting Solution of Buildings Based on 3D Scanning. Procedia Eng, 205, 160–166. doi: 10.1016/j. proeng.2017.09.948.
- Zemitis, J., & Terekh, M. (2018). Management of Energy Efficient Measures by Buildings’ Thermorenovation. MATEC Web of Conferences, 245. doi: 10.1051/matecconf/201824506003.
- Pukite, I., Grekis, A., Geipele, I., & Zeltins, N. (2017). Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia. Latvian Journal of Physics and Technical Sciences, 54 (4), 3–14. doi: 10.1515/lpts-2017-0022.
- Borodinecs, A., Prozuments, A., Zajacs, A., & Zemitis, J. (2019). Retrofitting of Fire Stations in Cold Climate Regions. Magazine of Civil Engineering, 90 (6), 85–92. doi: 10.18720/MCE.90.8.
- Zemitis, J., Bogdanovics, R., & Bogdanovica, S. (2021). The Study of Co2 Concentration in a Classroom during the Covid-19 Safety Measures. E3S Web of Conferences, 246. doi: 10.1051/e3sconf/202124601004.
- IEA. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency.
- European Parliament and the Council of the European Union. (2018). Consolidated text: Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Official Journal of the European Union.
- Zemitis, J., Borodinecs, A., Geikins, A., Kalamees, T., & Kuusk, K. (2016). Ventilation System Design in Three European Geo Cluster. Energy Procedia, 96. doi: 10.1016/j.egypro.2016.09.151.
- European Comission. (n.d.). Nearly zero-energy buildings. Available at https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en
- Attia, S., Kurnitski, J., Kosiński, P., Borodiņecs, A., Deme Belafi, Z., … & Banionis, K. (2022). Overview and Future Challenges of Nearly Zero-Energy Building (nZEB) Design in Eastern Europe. Energy Build, 276. doi:10.1016/j. enbuild.2022.112165.
- Ayou, D.S., Wardhana, M.F.V., & Coronas, A. (2023). Performance Analysis of a Reversible Water/LiBr Absorption Heat Pump Connected to District Heating Network in Warm and Cold Climates. Energy, 268. doi: 10.1016/J. ENERGY.2023.126679.
- Sandvall, A., & Karlsson, K.B. (2023). Energy System and Cost Impacts of Heat Supply to Low-Energy Buildings in Sweden. Energy, 268. doi: 10.1016/J. ENERGY.2023.126743.
- Lu, Z., & Ziviani, D. (2022). Operating Cost Comparison of State-of-the-Art Heat Pumps in Residential Buildings across the United States. Energy Build, 277. doi: 10.1016/J.ENBUILD.2022.112553.
- Sadeghi, H., Ijaz, A., & Singh, R.M. (2022). Current Status of Heat Pumps in Norway and Analysis of their Performance and Payback Time. Sustainable Energy Technologies and Assessments, 54. doi: 10.1016/J.SETA.2022.102829.
- Panasonic. (2018). New Aquarea Range 2017–2018. High-Efficiency Heat Pump Technology. Available at https://www.aircon.panasonic.eu/uploads/TR/clima_catalogues/EU%20AQUAREA%2028P%2017%20LR.pdf
- Milanowski, M., Cazorla-Marín, A., & Montagud-Montalvá, C. (2022). Energy Analysis and Cost-Effective Design Solutions for a Dual-Source Heat Pump System in Representative Climates in Europe. Energies (Basel), 15 (22), p. 8460. doi: 10.3390/EN15228460.
- Ministru kabinets. (2021). Ēku energoefektivitātes aprēķina metodes un ēku energosertifikācijas noteikumi. Latvijas Vēstnesis 2021/72.4.
- Marijanovic, Z., Theile, P., & Czock, B.H. (2022). Value of Short-Term Heating System Flexibility – A Case Study for Residential Heat Pumps on the German Intraday Market. Energy, 249, 123664. doi: 10.1016/J.ENERGY.2022.123664.
- Nageler, P., Schweiger, G., Pichler, M., Brandl, D., Mach, T., Heimrath, R., … & Hochenauer, C. (2018). Validation of Dynamic Building Energy Simulation Tools Based on a Real Test-Box with Thermally Activated Building Systems (TABS). Energy Build, 168, 42–55. doi: 10.1016/J. ENBUILD.2018.03.025.
- Ferrantelli, A., Fadejev, J., & Kurnitski, J. (2019). Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions. Energies (Basel), 12 (5). doi: 10.3390/en12050770.
- Englund, J. S., Cehlin, M., Akander, J., & Moshfegh, B. (2020). Measured and Simulated Energy Use in a Secondary School Building in Sweden - A Case Study of Validation, Airing, and Occupancy Behaviour. Energies (Basel), 13 (9). doi: 10.3390/EN13092325.
- Taebnia, M., Toomla, S., Leppä, L., & Kurnitski, J. (2020). Developing Energy Calculation Methodology and Calculation Tool Validations: Application in Air-Heated Ice Rink Arenas. Energy Build, 226. doi: 10.1016/J.ENBUILD.2020.110389.
- Catto Lucchino, E., Gelesz, A., Skeie, K., Gennaro, G., Reith, A., Serra, V., & Goia, F. (2021). Modelling double skin façades (DSFs) in Whole-Building Energy Simulation Tools: Validation and Inter-Software Comparison of a Mechanically Ventilated Single-Story DSF. Build Environ., 199. doi: 10.1016/J. BUILDENV.2021.107906.
- Mathes, R., Junker, H., Wunsch, M., Hemmatabady, H., Kabus, F., & Tilsen, R. (2022). Geothermal Heating Plant Schwerin: Realization of a Cascaded Large-Scale Heat Pump System for the Utilization of a Medium-Depth Geothermal System, European Geothermal Congress 2022, Berlin, Germany | 17-21 October 2022, pp. 1–6.
- Zirngibl, J. (2020). Heat Pump Standard EN 15316-4-2 – From Compliance to Real Consumption. REHVA Journal: 06/2020 5–9. https://www.rehva.eu/rehva-journal/chapter/heat-pump-standard-en-15316-4-2-from-compliance-to-real-consumption-1