Have a personal or library account? Click to login

A Comprehensive Overview of the Europen and Baltic Landscape for Hydrogen Applications and Innovations

Open Access
|May 2023

References

  1. Jansons, L., Zemite, L., Zeltins, N., Geipele, I., & Backurs, A. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. doi: 10.2478/lpts-2023-0003
  2. Jansons, L., Zemite, L., Zeltins, N., Bode, I., Geipele, I., & Kiesners, K. (2022). The Green Hydrogen and the EU Gaseous Fuel Diversification Risks. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. doi: 10.2478/lpts-2022-0033
  3. Jansons, L., Zemite, L., Zeltins, N., Bode, I., Vempere, L., & Jasevics, A. (2022). The Potential of the Hydrogen Underground Storages: their Types, Development Challenges and the Latvian Situation. The 63rd Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2022). doi: 10.1109/RTUCON56726.2022.9978776
  4. Vempere, L., Zemite, L., Vempers, G., Bode, I., & Jasevics, A. (2022). Assessment of Prospective Energy Storage Options for the Heat Plant – A Case Study. The 63rd Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2022). doi: 10.1109/RTUCON56726.2022.9978881
  5. Kleperis, J., Dimanta, I., Sloka, B., & Zemite, L. (2022). What Hydrogen can Bring to Rural Development: Review and Results of Entrepreneurs Survey in Latvia. Research for Rural Development, 37, 273–279. doi: 10.22616/rrd.28.2022.039
  6. Mezulis, A., Kleperis, J., Lesnicenoks, P., & Zemite, L. (2022). Prospects of Decarbonizing Industrial Areas in the Baltic States by Means of Alternative Fuels. Journal of Ecological Engineering, 23 (8), 152–161. doi: 10.12911/22998993/150748
  7. Kleperis, J., Boss, D., Mezulis, A., Zemite, L., Lesnicenoks, P., Knoks, A., & Dimanta, I. (2021). Analysis of the Role of the Latvian Natural Gas Network for the Use of Future Energy Systems: Hydrogen from RES. Latvian Journal of Physics and Technical Sciences, 58 (3), 214–226. doi: 10.2478/lpts-2021-0027
  8. Kobzars, V., Zemite, L., Jasevics, A., Kleperis, J., Dimanta, I., Knoks, A., & Lesnicenoks, P. (2021). Appropriateness of Hydrogen Production in Low-Power Hydropower Plant. The 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2021). doi: 10.1109/RTUCON53541.2021.9711687
  9. Wang, M., Wang, G., Sun, Z., Zhang, Y., & Xu, D. (2019). Review of Renewable Energy-Based Hydrogen Production Processes for Sustainable Energy Innovation. Global Energy Interconnection, 2 (5), 436–443. doi: 10.1016/j.gloei.2019.11.019.
  10. Boongaling Agaton, K., Talosig Batac, K. I., & Reyes Jr., E.M. (2022). Prospects and Challenges for Green Hydrogen Production and Utilization in the Philippines. International Journal of Hydrogen Energy, 47 (41), 17859–17870. doi: 10.1016/j. ijhydene.2022.04.101.
  11. Levene, I., Mann, J., K., Margolis, M., & Milbrandt, A. (2007). An Analysis of Hydrogen Production from Renewable Electricity Sources. Solar Energy, 81 (6), 773–780. doi: 10.1016/j. solener.2006.10.005.
  12. Dash, S.K., Chakraborty, S., & Elangovan, D. A. (2023). Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16, 1141. doi: 10.3390/en16031141
  13. IEA. (2022). Executive Summary – Global Hydrogen Review 2022. Available at https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary
  14. Department of Energy. (n.d.). Hydrogen Production: Biomass Gasification. Available at https://www.energy.gov/eere/fuelcells/hydrogen-production-biomassgasification
  15. Zhang, B., Zhang, S. X., Yao, R., Wu, Y.-H., & Qiu, J.-S. (2021). Progress and Prospects of Hydrogen Production: Opportunities and Challenges. Journal of Electronic Science and Technology, 19 (2), 100080. doi: 10.1016/j.jnlest.2021.100080.
  16. Agyekum, E.B., Nutakor, C., Agwa, A.M., & Kamel, S. A. (2022). Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes, 12, 173. doi: 10.3390/membranes12020173
  17. Sarker, A.K., Azad, A.K., Rasul, M.G., & Doppalapudi, A.T. (2023). Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies, 16, 1556. doi: 10.3390/en16031556
  18. Ishaq, H., Dincer, I., & Crawford, C. (2022). A Review on Hydrogen Production and Utilization: Challenges and Opportunities. International Journal of Hydrogen Energy, 47 (62), 26238–26264. doi: 10.1016/j. ijhydene.2021.11.149.
  19. Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable and Sustainable Energy Reviews, 57, 850–866. doi: 10.1016/j.rser.2015.12.112.
  20. Riera, J. A., Lima, R. M., & Knio, O. M. (2023). A Review of Hydrogen Production and Supply Chain Modeling and Optimization. International Journal of Hydrogen Energy, 48 (37), 13731–13755. doi: 10.1016/j.ijhydene.2022.12.242.
  21. Abdelghany, M. B., Shehzad, M. F., Liuzza, D., Mariani, V., & Glielmo, L. (2021). Optimal Operations for Hydrogen-Based Energy Storage Systems in Wind Farms via Model Predictive Control. International Journal of Hydrogen Energy, 46 (57), 29297–29313. doi: 10.1016/j. ijhydene.2021.01.064.
  22. Hao, J., Yang, Y., & Xu, C. (2022). A Comprehensive Review of Planning, Modeling, Optimization, and Control of Distributed Energy Systems. Carb Neutrality, 1, 28. doi: 10.1007/s43979-022-00029-1
  23. H2 Nodes. (n.d.). Riga. Available at https://www.h2nodes.eu/en/regions/riga.html
  24. Lui, J., Chen, W.-H., Daniel C.W. Tsang, D.C.W., & You, S. (2020). A Critical Review on the Principles, Applications, and Challenges of Waste-to-Hydrogen Technologies. Renewable and Sustainable Energy Reviews, 134, 110365. doi: /10.1016/j.rser.2020.110365.
  25. Kumar, S. S., & Himabindu, V. (2019). Hydrogen Production by PEM Water Electrolysis – A Review. Materials Science for Energy Technologies, 2 (3), 442–454. doi: 10.1016/j.mset.2019.03.002.
  26. Hydrogen Mobility Europe. (n.d.) Available at https://h2me.eu/
  27. JIVE. (n.d.). Fuel Cell Electric Buses. Available at https://www.fuelcellbuses.eu/projects/jive/
  28. CLEAN HYDROGEN PARTNERSHIP (n.d.). H2PORTS. Available at https://h2ports.eu/
  29. Interreg NEW. H2Share (n.d.) Hydrogen Solutions for Heavy-Duty Transport. Available at https://www.nweurope.eu/projects/project-search/h2share-hydrogen-solutions-for-heavy-duty-transport/
  30. H2GO Hydrogen Mobility. (n.d.). Available at https://h2go.site
  31. Gasworld. (2021). Riga Hydrogen City to Deploy 10 Fuel Cell Buses. Available at https://www.intelligenttransport.com/transport-news/21136/riga-hydrogen-powered-trolleybuses/#:~:text=Latvian%20public%20transport%20operator%20Rigas,%2Dfloor%20hydrogen%2Dpowered%20trolleybuses.
  32. Hydrogen Fuel News. (2021). Lithuanian Company Developing Hydrogen-Powered Truck.
  33. Estonian World. (2020). Estonian Company Developing Innovative Hydrogen Production Technology.
  34. EC. Cordis. (2020). Understanding the Neural Mechanisms of Multisensory Perception Based on Computational Principles. Available at https://cordis.europa.eu/project/id/646657
  35. HyBalance. (n.d.). Green Energy Project Denmark. Available at https://hybalance.eu
  36. H2FUTURE Green energy. (n.d.). Available at https://h2future-project.eu
  37. Baltic Energy Innovation Centre. (n.d.). Innovative Energy Technology for a Sustainable Future. Available at https://www.beic.nu
  38. Clean Energy Partnership. (2022). REPowering the EU with Hydrogen Valleys: Clean Hydrogen Partnership Invests EUR 105.4 million for Funding 9 Hydrogen Valleys across Europe. Available at https://www.clean-hydrogen.europa.eu/media/news/repowering-eu-hydrogen-valleys-clean-hydrogen-partnership-invests-eur-1054-million-funding-9-2023-01-31_en?utm_source=Google&utm_medium=email&utm_campaign=Hydrogen+call+22
  39. Clean Power Net. (2018). Planning Guideline for Fuel Cell Back-Up Power Supplies. Available at https://www.cleanpowernet.de/wp-content/uploads/2019/03/Planning-Guideline-UPS-and-EPS-with-Fuel-Cells.pdf
  40. H2ocean Project. (n.d.). Available at https://www.h2ocean-project.eu
  41. Haeolus. (n.d.) Available at https://www.haeolus.eu
  42. EC. Cordis. (2020). HyBalance Project. Available at https://cordis.europa.eu/project/id/671384
  43. EMEC. (2022). BIG HIT. Available at https://www.emec.org.uk/projects/hydrogen-projects/bighit
  44. Labs of Latvia. (2023). RTU Scientists Devise New Method for Producing Hydrogen. Available at https://labsoflatvia.com/en/news/rtu-scientists-devise-new-method-for-producing-hydrogen
  45. Latvenergo. (2021). Sustainability and Annual Report. Available at https://latvenergo.lv/storage/app/media/parskati/2021/IGP_2021_ENG.pdf
  46. Segev, G., Kibsgaard, J., Hahn C., Hu, Z.J., Cheng, W.-H., … & Houle, F. (2022). The 2022 Solar Fuels Roadmap. Phys. D: Appl. Phys., 55, 323003, doi: 10.1088/1361-6463/ac6f97
  47. EHA. (n.d.). Available at https://www.h2euro.org/hydrogen-applications/industrial-production
  48. Covestro. (2022). Fortescue Future Industries and Covestro Announce Plans to Enter a Long-term Green Hydrogen Supply Agreement. Available at https://www.covestro.com/press/fortescue-future-industries-and-covestro-announce-plans-to-enter-a-long-term-green-hydrogen-supply-agreement
  49. HyNet North West. (n.d.). Available at https://hynet.co.uk
  50. SSAB. (2021). HYBRIT: SSAB, LKAB and Vattenfall First in the World with Hydrogen-Reduced Sponge Iron. Available at https://www.ssab.com/en/news/2021/06/hybritssab-lkab-and-vattenfall-first-in-the-world-with-hydrogenreduced-sponge-iron
  51. H21. (n.d.). Available at https://h21.green
  52. Fife Council. (2020). Climate Fife: Sustainable Energy and Climate Action Plan (2020–2030). Available at https://www.fife.gov.uk/__data/assets/pdf_file/0028/219970/Climate-Fife-Sustainable-Energy-and-Climate-Action-Plan-2020-2030.pdf
  53. Interreg NEW. (2020). GENCOMM: GENerating Energy Secure COMMunities. Available at https://www.nweurope.eu/projects/project-search/gencomm-generating-energy-secure-communities
  54. H2NODES. (n.d.). Available at https://www.h2nodes.eu/en
  55. Covestro. (2021). Covestro and NPRC Plan to Use Hydrogen-Powered Barges. Available at https://www.covestro.com/press/covestro-and-nprc-plan-to-use-hydrogen-powered-barges
  56. H2Bulletin. (2021). AqualisBraemar Partners CMAL’s Hyseas III Project. Available at https://www.h2bulletin.com/aqualisbraemar-partners-cmals-hyseas-iii-project
  57. Global Trade. (2022). Nuvera Celebrates Fuel Cell Engine Achievements on National Hydrogen and Fuel Cell Day. Available at https://www.globaltrademag.com/nuvera-celebrates-fuel-cell-engine-achievements-on-national-hydrogen-and-fuel-cell-day
  58. EC. (n.d.). Zemship. Avaiable at https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=3081
  59. Flagship. (n.d.). Clean Waterborne Transport in Europe. Available at https://flagships.eu
  60. HyShip. (n.d.). Available at https://hyship.eu
  61. Clean Aviation. (n.d.). Available at https://www.clean-aviation.eu
  62. Airbus. (n.d.). Zero-Emission Journey. Available at https://www.airbus.com/en/innovation/zero-emission-journey
  63. Fuel Cell Works. (2022). H2FLY Assumes Leadership Role for Project HEAVEN Hydrogen Fuel Cell Aviation Initiative. Available at https://fuelcellsworks.com/news/h2fly-assumes-leadership-role-for-project-heaven-hydrogen-fuel-cell-aviation-initiative
  64. EMEC. (n.d.). HyFlyer Projects. Available at https://www.emec.org.uk/projects/hydrogen-projects/hyflyer
  65. Kallo, J. (2015). DLR Leads HY4 Project for Four-Seater Fuel Cell Aircraft. Fuel Cells Bulletin, 11, 13. doi: 10.1016/S1464-2859(15)30362-X.
DOI: https://doi.org/10.2478/lpts-2023-0016 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 33 - 53
Published on: May 30, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 L. Zemite, A. Backurs, A. Starikovs, A. Laizans, L. Jansons, L. Vempere, I. Bode, A. Broks, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.