Have a personal or library account? Click to login
Air Flow Analysis for Protective Clothing Ventilation Elements with and Without Constant Cross-Section Area Opening Cover

Air Flow Analysis for Protective Clothing Ventilation Elements with and Without Constant Cross-Section Area Opening

Open Access
|Apr 2023

Abstract

In this paper a ventilation element is designed with the constant cross-sectional area of 3.14 mm2 with the outer ring, to study the efficiency of ventilation at three different inlet air velocities (2, 5 and 8 m/s). There are five different cases analysed in the study, in which four cases are with different coordinate values of outer ring and core while the fifth case is studied with ventilation element without outer ring. The results of all five cases are analysed and compared to see the efficiency of ventilation element design. These ventilation elements are attached at ventilation hole at the inner part of the protective jacket. The attached ventilation element increases mechanical strength of the clothing by covering ventilation hole and restricting direct access of insects to the body. Moreover, ventilation elements permit smooth flow of air inside jacket. The objective is to determine which element’s geometrical configuration results in the minimum flow energy losses in the cell flow channel from the inlet to the outlet, which are represented by the pressure difference. Flow energy losses increase with increasing pressure difference (ΔP), and the body cooling reduces if the flow is weakened or there is of lost energy. SolidWorks Flow Simulation is used to calculate the pressure, temperature, and heat flux for the simplified elliptical model of the human body with a protective jacket. The obtained results are compared and analysed to study the concept of constant cross-sectional area in the design of ventilation elements with and without outer ring. The pressure and temperature difference for each case are calculated for the comparison and the obtained results show that the element design without outer ring provides better overall results and less flow energy loss in the cell flow channel than that of element design with outer ring.

DOI: https://doi.org/10.2478/lpts-2023-0012 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 63 - 73
Published on: Apr 15, 2023
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 A. Janushevskis, S. Rajni Vejanand, A. Gulevskis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.