Have a personal or library account? Click to login
Comparison of Passive and Active Fiducials for Optical Tracking Cover

Comparison of Passive and Active Fiducials for Optical Tracking

Open Access
|Oct 2022

References

  1. 1. Khor, W. S., Baker, B., Amin, K., Chan, A., Patel, K., & Wong, J. (2016). Augmented and Virtual Reality in Surgery—The Digital Surgical Environment: Applications, Limitations and Legal Pitfalls. Annals of Translational Medicine, 4 (23), 454–454. https://doi.org/10.21037/atm.2016.12.2310.21037/atm.2016.12.23522004428090510
  2. 2. Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. In: Proceedings of the 13th International Conference on Applied Computer and Applied Computational Science (ACACOS’14), (pp. 205–214). 23–25 April 2014, Kuala Lumpur, Malaysia.
  3. 3. Fida, B., Cutolo, F., di Franco, G., Ferrari, M., & Ferrari, V. (2018). Augmented Reality in Open Surgery. Updates in Surgery, 70 (3), 389–400. https://doi.org/10.1007/s13304-018-0567-810.1007/s13304-018-0567-830006832
  4. 4. de Cunsel, S. (2019). Evaluation of Augmented Reality (AR) Displays Performance Based on Human Visual Perception. Digital Optical Technologies, 110620V. https://doi.org/10.1117/12.252761310.1117/12.2527613
  5. 5. Tang, B., & Cao, S. (2020). A Review of VSLAM Technology Applied in Augmented Reality. IOP Conference Series: Materials Science and Engineering, 782 (4). https://doi.org/10.1088/1757-899X/782/4/04201410.1088/1757-899X/782/4/042014
  6. 6. Ahn, J., Choi, H., Hong, J., & Hong, J. (2019). Tracking Accuracy of a Stereo Camera-Based Augmented Reality Navigation System for Orthognathic Surgery. Journal of Oral and Maxillofacial Surgery, 77 (5), 1070.e1-1070.e11. https://doi.org/10.1016/j.joms.2018.12.03210.1016/j.joms.2018.12.03230707984
  7. 7. Welch, G., & Foxlin, E. (2002). Motion Tracking: No Silver Bullet, but a Respectable Arsenal. IEEE Computer Graphics and Applications, 22 (6), 24–38. https://doi.org/10.1109/MCG.2002.104662610.1109/MCG.2002.1046626
  8. 8. Nishino, H. (2010). A 6DoF fiducial tracking method based on topological region adjacency and angle information for tangible interaction. In: Proceedings of the 4th International Conference on Tangible, Embedded, and Embodied Interaction – TEI ’10 (vol. 18, p. 253). New York, New York, USA: ACM Press. https://doi.org/10.1145/1709886.170993710.1145/1709886.1709937
  9. 9. Furtado, J. S., Liu, H. H. T., Lai, G., Lacheray, H., & Desouza-Coelho, J. (2019). Comparative Analysis of OptiTrack Motion Capture Systems. Lecture Notes in Mechanical Engineering, 15–31. https://doi.org/10.1007/978-3-030-17369-2_210.1007/978-3-030-17369-2_2
  10. 10. Belghit, H., Bellarbi, A., Zenati, N., & Otmane, S. (2018). Vision-based Pose Estimation for Augmented Reality: A Comparison Study. ArXiv, 49413387.
  11. 11. Cutolo, F., Mamone, V., Carbonaro, N., Ferrari, V., & Tognetti, A. (2020). Ambiguity-Free Optical–Inertial Tracking for Augmented Reality Headsets. Sensors (Switzerland), 20 (5). https://doi.org/10.3390/s2005144410.3390/s20051444708573832155808
  12. 12. Sorriento, A., Porfido, M. B., Mazzoleni, S., Calvosa, G., Tenucci, M., Ciuti, G., & Dario, P. (2020). Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Reviews in Biomedical Engineering, 13 (c), 212–232. https://doi.org/10.1109/RBME.2019.293909110.1109/RBME.2019.293909131484133
  13. 13. Bi, S., Gu, Y., Zou, J., Wang, L., Zhai, C., & Gong, M. (2021). High Precision Optical Tracking System Based on near Infrared Trinocular Stereo Vision. Sensors, 21 (7), 2528. https://doi.org/10.3390/s2107252810.3390/s21072528803843833916582
  14. 14. Ballestin, G., Solari, F., & Chessa, M. (2018). Perception and action in peripersonal space: A comparison between video and optical see-through augmented reality devices. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 184–189). 16–20 October 2018, Munich, Germany. https://doi.org/10.1109/ISMAR-Adjunct.2018.0006310.1109/ISMAR-Adjunct.2018.00063
  15. 15. Javaid, M., & Haleem, A. (2020). Virtual Reality Applications toward Medical Field. Clinical Epidemiology and Global Health, 8 (2), 600–605. https://doi.org/10.1016/j.cegh.2019.12.01010.1016/j.cegh.2019.12.010
  16. 16. Zabels, R., Osmanis, K., Narels, M., Smukulis, R., & Osmanis, I. (2019). Integrated Head-Mounted Display System Based on a Multi-Planar Architecture, Advances in Display Technologies IX, 10942, 51–61. https://doi.org/10.1117/12.250995410.1117/12.2509954
  17. 17. Hai-Xia, X., Wei, Z., & Jiang, Z. (2015). 3D visual SLAM with a Time-of-Flight camera. In 2015 IEEE Workshop on Signal Processing Systems (SiPS) (pp. 1–6). 14–16 October 2015, Hangzhou, China. https://doi.org/10.1109/SiPS.2015.734499210.1109/SiPS.2015.7344992
  18. 18. Kunz, C., Maurer, P., Kees, F., Henrich, P., Marzi, C., Hlaváč, M., … & Mathis-Ullrich, F. (2020). Infrared Marker Tracking with the HoloLens for Neurosurgical Interventions. Current Directions in Biomedical Engineering, 6 (1), 1–4. https://doi.org/10.1515/cdbme-2020-002710.1515/cdbme-2020-0027
  19. 19. Pérez-Pachón, L., Poyade, M., Lowe, T., & Gröning, F. (2020). Image Overlay Surgery Based on Augmented Reality: A Systematic Review. Advances in Experimental Medicine and Biology, 1260, 175–195. https://doi.org/10.1007/978-3-030-47483-6_1010.1007/978-3-030-47483-6_1033211313
  20. 20. Atracsys. (2017). Data Sheet: fusionTrack 500. Available at https://www.atracsys-measurement.com/wp-content/documents/fTk500-datasheet.pdf
  21. 21. Khaleghi, B., & Rosing, T. Š. (2019). Thermal-Aware Design and Flow for FPGA Performance Improvement. Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition, DATE 2019, 342–347. https://doi.org/10.23919/DATE.2019.871518310.23919/DATE.2019.8715183
  22. 22. Israel, P. A. J., Carlos, P. O. J., Jorge, Á. S., Saúl, T. A., Emilio, V. S. J., & Susana, V. H. (2014). Design and construction of tools with reflecting-disks fiducials for optical stereo trackers: An afforable technique for navigation tools development. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2014, 5684680. 29 September–3 October 2014, Ciudad del Carmen, Mexico. https://doi.org/10.1109/ICEEE.2014.697825810.1109/ICEEE.2014.6978258
DOI: https://doi.org/10.2478/lpts-2022-0040 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 46 - 57
Published on: Oct 13, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 J. Odmins, K. Slics, R. Fenuks, E. Linina, K. Osmanis, I. Osmanis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.