Have a personal or library account? Click to login
Fibre Optical Coupler Simulation by Comsol Multiphysics Software Cover

References

  1. 1. Puttnam, B. J., Rademacher, G., & Luís, R. S. (2021). Space-Division Multiplexing for Optical Fibre Communications. Optica, 8 (9), 1186–1203.10.1364/OPTICA.427631
  2. 2. Yoshikane, N., & Tsuritani, T. (2020). Recent progress in space-division multiplexing optical network technology. In: 2020 International Conference on Optical Network Design and Modeling (ONDM) (pp. 1–4). 18–21 May 2020, Barcelona, Spain, IEEE.10.23919/ONDM48393.2020.9133031
  3. 3. Aiso, K., Tashiro, Y., Suzuki, T., & Yagi, T. (2001). Development of Er/Yb Co-doped Fibre for High-Power Optical Amplifiers. Furukawa Electric Review, 35–39.
  4. 4. Supe, A., Olonkins, S., Udalcovs, A., Senkans, U., Mūrnieks, R., Gegere, L., … & Bobrovs, V. (2021). Cladding-Pumped Erbium/Ytterbium Co-Doped Fibre Amplifier for C-Band Operation in Optical Networks. Applied Sciences, 11 (4), 1702.10.3390/app11041702
  5. 5. Selvarajan, A., Kar, S., & Srinivas, T. (2003). Optical Fibre Communication: Principles and Systems. Tata McGraw-Hill Education.
  6. 6. Filippov, V., Kerttula, J., Chamorovskii, Y., Golant, K., & Okhotnikov, O. G. (2010). Highly Efficient 750 W Tapered Double-Clad Ytterbium Fibre Laser. Optics Express, 18 (12), 12499–12512.10.1364/OE.18.01249920588376
  7. 7. Lei, C., Chen, Z., Leng, J., Gu, Y., & Hou, J. (2017). The Influence of Fused Depth on the Side-Pumping Combiner for All-Fibre Lasers and Amplifiers. Journal of Lightwave Technology, 35 (10), 1922–1928.10.1109/JLT.2017.2688347
  8. 8. Supe, A., Spolitis, S., Elsts, E., Murnieks, R., Doke, G., Senkans, U., ... & Bobrovs, V. (2020). Recent developments in cladding-pumped doped fibre amplifiers for telecommunications systems. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1–6). 19–23 July 2020, Bari, Italy, IEEE.10.1109/ICTON51198.2020.9203436
  9. 9. Choi, I. S., Park, J., Jeong, H., Kim, J. W., Jeon, M. Y., & Seo, H. S. (2018). Fabrication of 4× 1 Signal Combiner for High-Power Lasers Using Hydrofluoric Acid. Optics Express, 26 (23), 30667–30677.10.1364/OE.26.03066730469960
  10. 10. Zhu, X., Wang, K., Wang, F., Zhao, C., & Cai, Y. (2018). Coupling Efficiency of a Partially Coherent Radially Polarized Vortex Beam into a Single-Mode Fibre. Applied Sciences, 8 (8), 1313.10.3390/app8081313
  11. 11. Guay-Lord, R., Attendu, X., Lurie, K. L., Majeau, L., Godbout, N., Bowden, A. K., ... & Boudoux, C. (2016). Combined Optical Coherence Tomography and Hyperspectral Imaging Using a Double-Clad Fibre Coupler. Journal of Biomedical Optics, 21 (11), 116008.10.1117/1.JBO.21.11.11600827829103
  12. 12. Dikmelik, Y., & Davidson, F. M. (2005). Fibre-Coupling Efficiency for Free-Space Optical Communication through Atmospheric Turbulence. Applied Optics, 44 (23), 4946–4952.10.1364/AO.44.00494616114533
  13. 13. Eydi, N., Feghhi, S. A. H., & Jafari, H. (2021). Comprehensive Approach to Determination of Space Proton-Induced Displacement Defects in Silica Optical Fiber. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 502, 95–101.10.1016/j.nimb.2021.06.014
  14. 14. Novoa, D., & Joly, N. Y. (2021). Specialty Photonic Crystal Fibers and Their Applications. Crystals, 11 (7), 739.10.3390/cryst11070739
  15. 15. Ahmad, P., Khandaker, M. U., Rehman, F., Muhammad, N., Faruque, M. R. I., Ullah, Z., ... & Bradley, D. A. (2021). Facile Synthesis of High-Quality Nano-size 10B-Enriched Fibers of Hexagonal Boron Nitride. Crystals, 11 (3), 222.10.3390/cryst11030222
  16. 16. Nathanael, A. J., & Oh, T. H. (2021). Encapsulation of Calcium Phosphates on Electrospun Nanofibers for Tissue Engineering Applications. Crystals, 11 (2), 199.10.3390/cryst11020199
  17. 17. Fu, J., Chen, Y., Huang, Z., Yu, F., Wu, D., Pan, J., ... & Leng, Y. (2021). Photoionization-Induced Broadband Dispersive Wave Generated in an AR-filled Hollow-Core Photonic Crystal Fiber. Crystals, 11 (2), 180.10.3390/cryst11020180
  18. 18. Itoh, T., Araki, T., Ashida, M., Iwata, T., Muro, K., & Yamada, N. (2011). Optical properties. In: Springer Handbook of Metrology and Testing (pp. 587–663). Springer, Berlin, Heidelberg.10.1007/978-3-642-16641-9_11
  19. 19. Shukla, P., & Kaur, K. P. (2013). Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate. International Journal of Engineering and Advanced Technology (IJEAT), 2 (5), 487–490.
  20. 20. Standard, F. (1996). 1037C: Telecommunications: Glossary of Telecommunication Terms. National Communication System. Technology and Standards Division. Washington, DC: General Services Administration. Information Technology Service.
  21. 21. Chen, X., Xiao, Q. R., Jin, G. Y., Yan, P., & Gong, M. L. (2015). High Coupling Efficiency and Low Signal Light Loss (2+1)× 1 Coupler. Chinese Physics B, 24 (6), 064208.10.1088/1674-1056/24/6/064208
  22. 22. Xiao, Q. R., Yan, P., Yin, S., Hao, J., & Gong, M. (2010). 100 W Ytterbium-Doped Monolithic Fibre Laser with Fused Angle-Polished Side-Pumping Configuration. Laser Physics Letters, 8 (2), 125.10.1002/lapl.201010090
  23. 23. Zhu, X., Schülzgen, A., Li, H., Li, L., Wang, Q., Suzuki, S., … & Peyghambarian, N. (2008). Single-Transverse-Mode Output from a Fibre Laser Based on Multimode Interference. Optics Letters, 33 (9), 908–910.10.1364/OL.33.00090818451935
  24. 24. Pachon, E. G., Franco, M. A., & Cordeiro, C. M. (2012). Spectral bandwidth analysis of high sensitivity refractive index sensor based on multimode interference fiber device. In: OFS2012 22nd International Conference on Optical Fiber Sensors (vol. 8421, p. 84217Q). International Society for Optics and Photonics.10.1117/12.969928
  25. 25. Miyazaki, K., Honda, M., Kudo, T., & Kawamura, T. (1975). Theoretical and experimental considerati ons of optical fibre connector. In: Optical Fibre Transmission (p. WA4). Optical Society of America.
  26. 26. Tsuchiya, H., Nakagome, H., Shimizu, N., & Ohara, S. (1977). Double Eccentric Connectors for Optical Fibres. Applied Optics, 16 (5), 1323–1331.10.1364/AO.16.00132320168697
  27. 27. Knox, R. M., & Toulios, P. P. (1970). Integrated circuits for the millimeter through optical frequency range. In Proc. Symp. Submillimeter Waves (vol. 20, pp. 497–515). Brooklyn, NY.
  28. 28. Burns, W. K., & Milton, A. (1975) Mode Conversion in Planar-Dielectric Separating Waveguides. IEEE Journal of Quantum Electronics, 11 (1), 32–39.10.1109/JQE.1975.1068511
  29. 29. Okamoto, K. (1990). Theoretical Investigation of Light Coupling Phenomena in Wavelength-Flattened Couplers. Journal of Lightwave Technology, 8 (5), 678–683.10.1109/50.54474
  30. 30. Shibayama, J., Yamauchi, J., & Nakano, H. (2003). Application of the finite-difference beam-propagation method to optical waveguide analysis. In: 17th International Conference on Applied Electromagnetics and Communications (pp. 262–265). 1–3 October 2003, Dubrovnik, Croatia, IEEE.
  31. 31. Optiwave. (n.d.). Optiwave Photonic Software. Available at https://www.optiwave.com/
  32. 32. Pepper, D. W., & Heinrich, J. C. (2017). The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL. CRC press.10.1201/9781315395104
  33. 33. Deibel, J. A., Wang, K., Escarra, M. D., & Mittleman, D. M. (2006). Enhanced Coupling of Terahertz Radiation to Cylindrical Wire Waveguides. Optics Express, 14 (1), 279–290.10.1364/OPEX.14.00027919503341
  34. 34. Wen, J., Romanov, S., & Peschel, U. (2009). Excitation of Plasmonic Gap Waveguides by Nanoantennas. Optics Express, 17 (8), 5925–5932.10.1364/OE.17.00592519365411
  35. 35. Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. Acs Photonics, 6 (2), 553–557.10.1021/acsphotonics.8b01628
  36. 36. Pidishety, S., Srinivasan, B., & Brambilla, G. (2016). All-Fiber Fused Coupler for Stable Generation of Radially and Azimuthally Polarized Beams. IEEE Photonics Technology Letters, 29 (1), 31–34.10.1109/LPT.2016.2625421
  37. 37. Chamanzar, M., Scopelliti, M. G., Bloch, J., Do, N., Huh, M., Seo, D., ... & Maharbiz, M. M. (2019). Ultrasonic Sculpting of Virtual Optical Waveguides in Tissue. Nature Communications, 10 (1), 1–10.10.1038/s41467-018-07856-w632702630626873
  38. 38. Zhang, Y., Zhu, W., Fan, P., He, Y., Zhuo, L., Che, Z., ... & Chen, Z. (2020). A Broadband and Low-Power Light-Control-Light Effect in a Fiber-Optic Nano-Optomechanical System. Nanoscale, 12 (17), 9800–9809.10.1039/C9NR10953F32328601
  39. 39. Comsol. (n.d.). Mach–Zehnder Modulator. Available at thttps://www.comsol.com/model/mach-8211-zehnder-modulator-5061
  40. 40. Ou, P., Yan, P., Gong, M., & Wei, W. (2004). Coupling Efficiency of Angle-Polished Method for Side-Pumping Technology. Optical Engineering, 43 (4), 816–821.10.1117/1.1666855
  41. 41. Xiao, Q., Chen, X., Ren, H., Yan, P., & Gong, M. (2013). Fibre Coupler for Mode Selection and High-Efficiency Pump Coupling. Optics Letters, 38 (7), 1170–1172.10.1364/OL.38.00117023546280
  42. 42. Fanlong, D., Xinhai, Z., & Feng, S. (2018). Side Coupler Applied in a Multi-Pumped Yb-Doped Triple-Clad Fibre Laser. Laser Physics, 28 (12), 125106.10.1088/1555-6611/aae185
  43. 43. Ou, P., Yan, P., Gong, M., Wei, W., & Yuan, Y. (2004). Studies of Pump Light Leakage out of Couplers for Multi-Coupler Side-Pumped Yb-doped Double-Clad Fibre Lasers. Optics Communications, 239 (4–6), 421–428.10.1016/j.optcom.2004.05.055
  44. 44. Mohammed, W. S., Mehta, A., & Johnson, E. G. (2004). Wavelength Tunable Fibre Lens Based on Multimode Interference. Journal of Lightwave Technology, 22 (2), 469.10.1109/JLT.2004.824379
  45. 45. Guzmán-Sepúlveda, J. R., Guzmán-Cabrera, R., & Castillo-Guzmán, A. A. (2021). Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes. Sensors, 21 (5), 1862.10.3390/s21051862796211833800041
DOI: https://doi.org/10.2478/lpts-2022-0036 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 14
Published on: Oct 13, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 E. Elsts, A. Supe, S. Spolitis, K. Zakis, S. Olonkins, A. Udalcovs, R. Murnieks, U. Senkans, D. Prigunovs, L. Gegere, K. Draguns, I. Lukosevics, O. Ozolins, J. Grube, V. Bobrovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.