Have a personal or library account? Click to login
Microwave Observations of the Sun with Virac RT-32 Radio Telescope: The Expansion of Possibilities Cover

Microwave Observations of the Sun with Virac RT-32 Radio Telescope: The Expansion of Possibilities

By: D. Bezrukovs  
Open Access
|Jun 2022

References

  1. 1. Nikulin, I. F., & Dumin, Y. V. (2016). Coronal Partings. Advances in Space Research, 57 (3), 904–911.10.1016/j.asr.2015.11.020
  2. 2. Antiochos, S.K., Mikic, Z., Titov, V.S., Lionello, R., & Linker, J. A. (2011). A Model of the Sources of the Slow Solar Wind. The Astrophysical Journal, 731 (2), 1–28.10.1088/0004-637X/731/2/112
  3. 3. Bezrukovs, D.A., & Ryabov, B.I. (2014). Persistence of Relatively Low Plasma Density in the Atmosphere of Sun Spot. Latvian Journal of Physics and Technical Sciences, 51 (2), 65–72.
  4. 4. Ryabov, B., Bezrukovs, D., & Kallunki, J. (2017). Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions. Latvian Journal of Physics and Technical Sciences, 54 (3), 58–66.10.1515/lpts-2017-0021
  5. 5. Bezrukovs, D. (2013). Spectral Polarimetric Observations of the Sun by VIRAC RT-32 Radio Telescope: First Results. Baltic Astronomy, 22 (1), 9–13.10.1515/astro-2017-0142
  6. 6. Bezrukovs, D., Kallunki, J., & Ryabov, B. (2018) Spectral Polarimetric Observations of the Sun by VIRAC RT-32 Radio Telescope: Calibrations. Space Research Review, 5, 1–16.
  7. 7. Borovik, V.N., Kurbanov, M.S., Livshits, M.A., & Ryabovy, B.I. (1990). Coronal Holes against the Background of the Quiet Sun: Observations with the RATAN-600 in the 2–32 cm Range. Astron. J., 67, 1038–1052.
  8. 8. Ryabov, B.I., & Shibasaki, K. (2016). Depressed Emission between Magnetic Arcades near Sunspot. Baltic Astronomy, 25 (2), 252.10.1515/astro-2017-0124
  9. 9. Kallunki, J. (2018). Rotation of the Low Temperature regions (LTR) at 8 mm. Phys. Astron. Int. J., 2 (5), 403–406.10.15406/paij.2018.02.00117
  10. 10. Braiša, R., Ruždjak, V., Vršnak, B., Wohl, H., Pohjolainen, S., & Urpo, S. (1999). An Estimate of Microwave Low-Brightness-Temperature Regions Obtained Measuring their Rotation Velocity. Solar Physics, 184, 281–296.10.1023/A:1005124022163
  11. 11. Mangum, J.G., Emerson, D.T., & Greisen, E.W. (2007). The On-The-Fly Imaging Technique, A&A, 474, 679–687.10.1051/0004-6361:20077811
  12. 12. White, R. L. (1994). Image Restoration Using the Damped Richardson-Lucy Method. Astronomical Data Analysis Software and System III, ASP Conference Series, 61.10.1117/12.176819
  13. 13. Grebinskij, A., Shibasaki, K., & Zhang, H. (1998). Microwave Measurements of the Solar Magnetic Fields at Chromosphere-Corona. Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium, NRO report 479, 59–64.
  14. 14. Bezrukov, D. A., Ryabov, B. I., Bogod, V. M., Gelfreikh, G. B., Maksimov, V. P., Drago, F., … & Borisevich, T. P. (2005). On the Technique of Coronal Magnetography through Quasi-Transverse Propagation of Microwaves. Baltic Astronomy, 14 (1), 83–103.
  15. 15. Obridko, V.N., & Staude, J. (1988). A Two-Component Working Model for the Atmosphere of a Large Sunspot Umbra. Astron. Astrophys., 189, 232–242.
DOI: https://doi.org/10.2478/lpts-2022-0019 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 5 - 13
Published on: Jun 23, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 D. Bezrukovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.