Have a personal or library account? Click to login
On the Issue of Collision of Balls in an Auto-Balancing Device Cover

On the Issue of Collision of Balls in an Auto-Balancing Device

Open Access
|Jun 2022

References

  1. 1. Saveiev, I.V. (1982). General Physics Course (vol. I. Mechanics, Oscillations and Waves, Molecular Physics Science). Main Editorial Office of Physical and Mathematical Literature, M. (in Russian).
  2. 2. Grigoriev, A.Yu., Grigoriev, K.A., & Malyavko, D.P. (2015). Collision of Bodies: Textbook. SPb.: ITMO University (in Russian).
  3. 3. Strautmanis, G., Mezītis, M., Strautmane, V., & Gorbenko, A. (2018). Model of a vertical rotor with an automatic balancer with two compensating masses. In: Vibroengineering PROCEDIA, vol. 21: 35th International Conference on Vibroengineering (pp. 202–207), 13–15 December 2018, India, Delhi.10.21595/vp.2018.20105
  4. 4. Sperling, L., Ryzhik, B., Linz, Ch., & Duckstein, H. (2002). Simulation of Two-Plane Automatic Balancing of a Rigid Rotor. Mathematics and Computers in Simulation, 58 (4–6), 351–365.10.1016/S0378-4754(01)00377-9
  5. 5. Ryzhik, B., Duckstein, H., & Sperling, L. (2004). Partial Compensation of Unbalance by One- and Two Automatic Balancing Devices. International Journal of Rotating Machinery, 10 (3), 193–201.10.1155/S1023621X0400020X
  6. 6. Gorbenko, A.N., Klimenko, N.P., & Strautmanis, G. (2017). Influence of Rotor Unbalance Increasing on the Stability of its Autobalancing. Procedia Engineering, 206, 266–271. doi: 10.1016/j.proeng.2017.10.472.
  7. 7. Goncharov, V., Filimonikhin, G., Nevdakha, A., & Pirogov, V. (2017). An Increase of the Balancing Capacity of Ball or Roller-Type Auto-Balancers with Reduction of Time of Achieving Auto-Balancing. Eastern-European Journal of Enterprise Technologies, 1 (7), 15–24. doi: 10.15587/1729-4061.2017.92834.
  8. 8. Kapitza, P.L. (1951). Dynamic stability of the pendulum at an oscillating suspension point. ZhETF, 21, 588–597 (in Russian).
  9. 9. Butikov, E.I. (2011). An Improved Criterion for Kapitza’s Pendulum Stability. Journal of Physics A: Mathematical and Theoretical, 44, 295202.10.1088/1751-8113/44/29/295202
  10. 10. Butcher, J.C. (2008). Numerical Methods for Ordinary Differential Equations. John Willey & Sons.10.1002/9780470753767
  11. 11. Urbahs, A., Banovs, M., Carjova, K., Turko, V., & Feshchuk, J. (2017). Research of the Micromechanics of Composite Materials with Polymer Matrix Failure under Static Loading Using the Acoustic Emission Method. Aviation, 21 (1), 9–16.10.3846/16487788.2016.1264720
  12. 12. Urbahs, A., & Carjova, K. (2019). Bolting Elements of Helicopter Fuselage and Tail Boom Joints Using Acoustic Emission Amplitude and Absolute Energy Criterion. Journal of Aerospace Engineering, 32 (3), 3–12.10.1061/(ASCE)AS.1943-5525.0000963
  13. 13. Urbahs, A., Carjova, K., & Fescuks, J. (2017). Analysis of the Results of Acoustic Emission Diagnostics of a Structure during Helicopter Fatigue Tests. Aviation, 21 (2), 64–69.10.3846/16487788.2017.1335231
DOI: https://doi.org/10.2478/lpts-2022-0016 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 140 - 154
Published on: Jun 23, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 G. Strautmanis, I. Schukin, G. Filimonikhin, M. Mezitis, I. Kurjanovics, I. Irbe, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.