Have a personal or library account? Click to login
Maximum Shannon Information Delivered in a Lecture Cover
By: L. Alksne and  A. Ozols  
Open Access
|Apr 2022

References

  1. 1. Vajapeyam, S. (2014). Understanding Shannon’s Entropy Metric for Information. eprint arXiv:1405.2061
  2. 2. Kolchinsky, A., & Wolpert, D.H. (2018). Semantic Information, Autonomous Agency and Non-equilibrium Statistical Physics. Interface Focus, 8, 20180041. http://dx.doi.org/10.1098/rsfs.2018.0041.10.1098/rsfs.2018.0041622781130443338
  3. 3. Carlson, Bruce A. (1986). Communication Systems. An Introduction to Signals and Noise in Electric Communication. New York: McGraw-Hill Book Company.
  4. 4. MathWorks. (n.d.). Entropy. Available at https://se.mathworks.com/help/images/ref/entropy.html
  5. 5. MathWorks. (n.d.). Signal. Available at https://www.mathworks.com/helps/signal/ref/pentropy.html#mw_da069ed5-a376-4d11-84d3-ca16946eab9
  6. 6. Seeling, P. (2010). Scene Change Detection for Uncompressed Video. Technological Developments in Education and Automation. doi:https://doi-org.resursi.rtu.lv/10.1007/978-90-481-3656-8_310.1007/978-90-481-3656-8_3
  7. 7. Xuguang Zhang, X. S. (2019). Crowd Panic State Detection Using Entropy of the Distribution. Physica A: Statistical Mechanics and its Applications, 525 (7), 935–945. doi: 10.1016/j.physa.2019.04.03310.1016/j.physa.2019.04.033
  8. 8. Luo, Z. B. (2016). Human Abnormal Behavior Detection Based on RGBD Video’s Skeleton Information Entropy. Lecture Notes in Electrical Engineering. doi:https://doi-org.resursi.rtu.lv/10.1007/978-3-662-49831-6_74
  9. 9. Ferreira, T.A.F.R (2014). Entropy Based Dynamic Ad Placement Algorithms in Video Advertising. PhD Thesis, University of Beira Interior, Covilha, Portugal.
  10. 10. Nowosad, J. & Stepinski, T.F. (2019). Information Theory as a Consistent Framework for Quantification and Classification of Landscape Patterns. Landscape Ecol., 34, 2091–2101.10.1007/s10980-019-00830-x
  11. 11. Černekova, Z., Nikou, C., & Pitas, I. (2002). Entropy Metrics used for Video Summarization. Proceedings of the Spring Conference on Computer Graphics, Budmarice, Slovakia, 73–82.10.1145/584458.584471
  12. 12. Liu, J., Wang, Sh., Ma, Wei-Chiu, Shah, M., Hu, R., Dhawan, P. & Urtasan, R. (2020). Conditional Entropy Coding for Efficient Video Compression. Image and Video Processing. ECCV, LNC3, 12362, 453–468. https://doi.org/10.1007/978-3-030-58520-4_27.10.1007/978-3-030-58520-4_27
  13. 13. Sun, J., Xu, Zh., Liu, J., & Yeo, Y. (2011). An Objective Visual Security Assesment for Cipher-Images Based on Local Entropy. Multimed. Tools Appl., 53, 75–95.10.1007/s11042-010-0491-5
  14. 14. Fei, M., Jiang, W., & Mao, W. (2017). Memorable and Rich Video Summarization. J. Vis. Comun. Image Represent. 42 (C), 207–217.10.1016/j.jvcir.2016.12.001
  15. 15. Alksne, L. (2016). How to produce video lectures to engage students and deliver the maximum amount of information. Proceedings of the International Scientific Conference “Society. Integration. Education”, 503–516. doi: http://dx.doi.org/10.17770/sie2016vol2.142410.17770/sie2016vol2.1424
  16. 16. Wieling, M., & Adriaan Hofman, W.H. A. (2010). The Impact of Online Video Lecture Recordings and Automated Feedback on Student Performance. Computers & Education, 54 (4), :992-–998. doi: 10.1016/j.compedu.2009.10.00210.1016/j.compedu.2009.10.002
  17. 17. Pauliks, R. (2016). Quality Studies of Video Transmission Services in Packet Networks. Summary of PhD Thesis. Riga: RTU Publishing House. (in Latvian).
  18. 18. Jehonovičs, A. (1984). Handbook of Physics and Technics. Rīga: Zvaigzne. (in Latvian).
  19. 19. Smith, J. (2007). Why Can an Opera Singer be Heard over the Much Louder Orchestra? Available at https://www.scientificamerican.com/article/expert-opera-singer/
  20. 20. Horowitz, S. (2013). The Universal Sense: How Hearing Shapes the Mind. USA: Bloomsbury.
  21. 21. Nave, C.R. (2016). Hyperphysics. Atlanta: Georgia State University.
  22. 22. Errede, S. (2002–2017). The Human Ear-Hearing, Sound Intensity and Loudness Levels. UIUC Physics 406 Acoustical Physics of Music,1–33.
  23. 23. Benjamin, A.T., & Quinn, J.J. (2003). The Proofs that Really Count. The Art of Combinatorial Proof. The Dolciani Mathematical Expositions 27, The Mathematical Association of America, ISBN 978-0-88385-333-7.10.5948/9781614442080
  24. 24. Gaisler, W.S, & Banks, M.S. (2010). Visual perfomance. In M. Bass, Handbook of Optics, vol. III. Vision and Vision Optics (pp. 2.1–2.51). New York: McGraw Hill Companies, Inc.
  25. 25. Luizov, A.V. (1989). Colour and Light. Leningrad: Energoatomizdat. (in Russian).
  26. 26. Richards, A. (2011). Alien Vision. Exploring the Electromagnetic Spectrum with Imaging Technology. (2nd ed.). Bellingham, Washington: SPIE Press.10.1117/3.883085
  27. 27. Werner, J.S., Schefrin, B.E., & Bradley, A. (2010). Optics and Vision of the Aging Eye. In M.Bass, Handbook of Optics, vol. III. Vision and Vision Optics (pp.14.1–14.38). New York: McGraw Hill Companies, Inc.
  28. 28. Temnikov, F.E., Afonin, V.A., & Dmitriev, V.I. (1971). Theoretical Foundations of Information Technics. Moscow: Energija. (in Russian).
  29. 29. Markowsky, G. (2017). Information Theory. Encyclopaedia Britannica. Available at https://www.britannica.com/science/information-theory
DOI: https://doi.org/10.2478/lpts-2022-0008 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 12 - 22
Published on: Apr 22, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 L. Alksne, A. Ozols, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.