Have a personal or library account? Click to login
Morphology Influence on Wettability and Wetting Dynamics of ZnO Nanostructure Arrays Cover

Morphology Influence on Wettability and Wetting Dynamics of ZnO Nanostructure Arrays

Open Access
|Feb 2022

References

  1. 1. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. DOI:10.3762/bjnano.9.227.10.3762/bjnano.9.227614272730254837
  2. 2. Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. (2016). Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sensors and Actuators B: Chemical, 229, 664–677. DOI:10.1016/j.snb.2016.01.099.10.1016/j.snb.2016.01.099
  3. 3. Zaidi, S. A., & Shin, J. H. (2016). Recent Developments in Nanostructure Based Electrochemical Glucose Sensors. Talanta, 149, 30–42. DOI:10.1016/j. talanta.2015.11.033.10.1016/j.talanta.2015.11.033
  4. 4. Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., & Singh, S. P. (2012). Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Analytica Chimica Acta, 737, 1–21. DOI:10.1016/j.aca.2012.05.048.10.1016/j.aca.2012.05.04822769031
  5. 5. Mihailova, I., Gerbreders, V., Tamanis, E., Sledevskis, E., Viter, R., & Sarajevs, P. (2013). Synthesis of ZnO Nanoneedles by Thermal Oxidation of Zn Thin Films. Journal of Non-Crystalline Solids, 377, 212–216. DOI:10.1016/j.jnoncrysol.2013.05.003.10.1016/j.jnoncrysol.2013.05.003
  6. 6. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., Ogurcovs, A., & Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. In: Eighth International Conference on Advanced Optical Materials and Devices, (pp. 1–8), 25–27 August 2014, 9421, 94210A. Riga, Latvia: SPIE. DOI:10.1117/12.2083960.10.1117/12.2083960
  7. 7. Alvi, N. H., Hassan, W. ul, Farooq, B., Nur, O., & Willander, M. (2013). Influence of Different Growth Environments on the Luminescence Properties of ZnO Nanorods Grown by the Vapor–Liquid–Solid (VLS) Method. Materials Letters, 106, 158–16. DOI:10.1016/j.matlet.2013.04.074.10.1016/j.matlet.2013.04.074
  8. 8. Abbas, K. N., Bidin, N., Sabry, R. S., Al-Asedy, H. J., Al-Azawi, M. A., & Islam, S. (2016). Structures and Emission Features of High-Density ZnO Micro/Nanostructure Grown by an Easy Hydrothermal Method. Materials Chemistry and Physics, 182, 298–307.DOI:10.1016/j. matchemphys.2016.07.035.10.1016/j.matchemphys.2016.07.035
  9. 9. Baruah, S., & Dutta, J. (2009). Hydrothermal Growth of ZnO Nanostructures. Science and Technology of Advanced Materials, 10 (1), 013001. DOI:10.1088/1468-6996/10/1/013001.10.1088/1468-6996/10/1/013001510959727877250
  10. 10. Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15 (11), 913–947. DOI:10.1002/elan.200390114.10.1002/elan.200390114
  11. 11. Lin, D., Tang, T., Jed Harrison, D., Lee, W. E., & Jemere, A. B. (2015). A Regenerating Ultrasensitive Electrochemical Impedance Immunosensor for the Detection of Adenovirus. Biosensors and Bioelectronics, 68, 129–134. DOI:10.1016/j. bios.2014.12.032.10.1016/j.bios.2014.12.032
  12. 12. Kafka, J., Pänke, O., Abendroth, B., & Lisdat, F. (2008). A Label-Free DNA Sensor Based on Impedance Spectroscopy. Electrochimica Acta, 53 (25), 7467–7474. DOI:10.1016/j.electacta.2008.01.031.10.1016/j.electacta.2008.01.031
  13. 13. Ni, Y., Xu, J., Liang, Q., & Shao, S. (2017). Enzyme-Free Glucose Sensor Based on Heteroatom-Enriched Activated Carbon (HAC) Decorated with Hedgehog-Like NiO Nanostructures. Sensors and Actuators B: Chemical, 250, 491–498. DOI:10.1016/j. snb.2017.05.004.10.1016/j.snb.2017.05.004
  14. 14. Sanguino, P., Monteiro, T., Bhattacharyya, S. R., Dias, C. J., Igreja, R., & Franco, R. (2014). ZnO Nanorods as Immobilization Layers for Interdigitated Capacitive Immunosensors. Sensors and Actuators B: Chemical, 204, 211–217. doi:10.1016/j.snb.2014.06.141.10.1016/j.snb.2014.06.141
  15. 15. Jacobs, M., Muthukumar, S., Munje, R., Quadri, B., & Prasad, S. (2014). Analysis of nanotextured ZnO surfaces for biosensing applications. In: 14th IEEE International Conference on Nanotechnology, (pp. 515–520), 18–21 August 2014. Toronto, Canada: IEEE. DOI:10.1109/nano.2014.6968149.10.1109/NANO.2014.6968149
  16. 16. Raymand, D., van Duin, A. C. T., Spångberg, D., Goddard, W. A., & Hermansson, K. (2010). Water Adsorption on Stepped ZnO Surfaces from MD Simulation. Surface Science, 604 (9–10), 741–752. DOI:10.1016/j.susc.2009.12.012.10.1016/j.susc.2009.12.012
  17. 17. Hamid, S. B. A., Teh, S. J., & Lai, C. W. (2017). Photocatalytic Water Oxidation on ZnO: A Review. Catalysts, 7 (12), 93. DOI:10.3390/catal7030093.10.3390/catal7030093
  18. 18. Bhavsar, K., Ross, D., Prabhu, R., & Pollard, P. (2015). LED-Controlled Tuning of ZnO Nanowires’ Wettability for Biosensing Applications. Nano Reviews, 6 (1), 26711. DOI:10.3402/nano.v6.26711.10.3402/nano.v6.26711439056325855065
  19. 19. Khranovskyy, V., Ekblad, T., Yakimova, R., & Hultman, L. (2012). Surface Morphology Effects on the Light-Controlled Wettability of ZnO Nanostructures. Applied Surface Science, 258 (20), 8146–8152. DOI:10.1016/j.apsusc.2012.05.011.10.1016/j.apsusc.2012.05.011
  20. 20. Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Soozanipour, A., Low, Z.-X., Asadnia, M., …. & Razmjou, A. (2018). Biosensors for Wastewater Monitoring: A Review. Biosensors and Bioelectronics, 118, 66–79. DOI:10.1016/j.bios.2018.07.019.10.1016/j.bios.2018.07.01930056302
  21. 21. Duta, L., Popescu, A. C., Zgura, I., Preda, N., & Mihailescu, I. N. (2015). Wettability of Nanostructured Surfaces. Wetting and Wettability, Intech Open, 207–252. DOI:10.5772/60808.10.5772/60808
  22. 22. Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm., 28 (8), 1346–1358. DOI:10.1039/c9ce01556f.10.1039/C9CE01556F
  23. 23. Krasovska, M., Gerbreders, V., Paskevics, V., Ogurcovs, A., & Mihailova, I. (2015). Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method. Latvian Journal of Physics and Technical Sciences, 52 (5), 28–40. DOI:10.1515/lpts-2015-0026.10.1515/lpts-2015-0026
  24. 24. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 100276. DOI:10.1016/j.sbsr.2019.100276.10.1016/j.sbsr.2019.100276
  25. 25. Chae, K.-W., Zhang, Q., Kim, J. S., Jeong, Y.-H., & Cao, G. (2010). Low-Temperature Solution Growth of ZnO Nanotube Arrays. Beilstein Journal of Nanotechnology, 1, 128–134. DOI:10.3762/bjnano.1.15.10.3762/bjnano.1.15304591421977402
  26. 26. Roza, L., Rahman, M. Y. A., Umar, A. A., & Salleh, M. M. (2015). Direct Growth of Oriented ZnO Nanotubes by Self-Selective Etching at Lower Temperature for Photo-Electrochemical (PEC) Solar Cell Application. Journal of Alloys and Compounds, 618, 153–158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113
  27. 27. Wang, H., Li, G., Jia, L., Wang, G., & Tang, C. (2008). Controllable Preferential-Etching Synthesis and Photocatalytic Activity of Porous ZnO Nanotubes. The Journal of Physical Chemistry C, 112(31), 11738–11743. DOI:10.1021/jp803059k.10.1021/jp803059k
  28. 28. Myint, M. T. Z., Kumar, N. S., Hornyak, G. L., & Dutta, J. (2013). Hydrophobic/ Hydrophilic Switching on Zinc Oxide Micro-Textured Surface. Applied Surface Science, 264, 344–348. DOI:10.1016/j. apsusc.2012.10.024.10.1016/j.apsusc.2012.10.024
  29. 29. Patel, K. H., & Rawal, S. K. (2016). Exploration of Wettability and Optical Aspects of ZnO Nano Thin Films Synthesized by Radio Frequency Magnetron Sputtering. Nanomaterials and Nanotechnology, 6, 22. DOI:10.5772/62804.10.5772/62804
  30. 30. Han, J., & Gao, W. (2008). Surface Wettability of Nanostructured Zinc Oxide Films. Journal of Electronic Materials, 38 (4), 601–608. DOI:10.1007/s11664-008-0615-0.10.1007/s11664-008-0615-0
  31. 31. Shaban, M., Zayed, M., & Hamdy, H. (2017). Nanostructured ZnO Thin Films for Self-Cleaning Applications. RSC Advances, 7 (2), 617–631. DOI:10.1039/c6ra24788a.10.1039/C6RA24788A
  32. 32. Lin, L.-Y., Kim, H.-J., & Kim, D.-E. (2008). Wetting Characteristics of ZnO Smooth Film and Nanowire Structure with and without OTS Coating. Applied Surface Science, 254 (22), 7370–7376. DOI:10.1016/j. apsusc.2008.05.337.10.1016/j.apsusc.2008.05.337
  33. 33. Subedi, D. P., Madhup, D. K., Sharma, A., Joshi, U. M., & Huczko, A. (2012). Retracted: Study of the Wettability of ZnO Nanofilms. International Nano Letters, 2 (1), 117–122. DOI:10.1186/2228-5326-2-1.10.1186/2228-5326-2-1
  34. 34. Mao-Gang, G., Xiao-Liang, X., Zhou, Y., Yan-Song, L., & Ling, L. (2010). Superhydrophobic Surfaces via Controlling the Morphology of ZnO Micro/Nano Complex Structure. Chinese Physics B, 19 (5), 056701. DOI:10.1088/1674-1056/19/5/056701.10.1088/1674-1056/19/5/056701
  35. 35. Yang, P., Wang, K., Liang, Z., Mai, W., Wang, C., Xie, W., … & Song, J. (2012). Enhanced Wettability Performance of Ultrathin ZnO Nanotubes by Coupling Morphology and Size Effects. Nanoscale, 4 (18), 5755. DOI:10.1039/c2nr31380d.10.1039/c2nr31380d22895660
  36. 36. Suresh Kumar, P., Sundaramurthy, J., Mangalaraj, D., Nataraj, D., Rajarathnam, D., & Srinivasan, M. P. (2011). Enhanced Super-Hydrophobic and Switching Behavior of ZnO Nanostructured Surfaces Prepared by Simple Solution – Immersion Successive Ionic Layer Adsorption and Reaction Process. Journal of Colloid and Interface Science, 363 (1), 51–58. DOI:10.1016/j. jcis.2011.07.015.10.1016/j.jcis.2011.07.015
  37. 37. Piech, M., Sounart, T. L., & Liu, J. (2008). Influence of Surface Morphology on the Wettability of Microstructured ZnO-Based Surfaces. The Journal of Physical Chemistry C, 112 (51), 20398–20405. DOI:10.1021/jp804815x.10.1021/jp804815x
  38. 38. Zhou, X., Guo, X., Ding, W., & Chen, Y. (2008). Superhydrophobic or Superhydrophilic Surfaces Regulated by Micro-Nano Structured ZnO Powders. Applied Surface Science, 255 (5), 3371–3374. DOI:10.1016/j.apsusc.2008.09.080.10.1016/j.apsusc.2008.09.080
  39. 39. Ennaceri, H., Wang, L., Erfurt, D., Riedel, W., Mangalgiri, G., Khaldoun, A., … & Ennaoui, A. (2016). Water-Resistant Surfaces Using Zinc Oxide Structured Nanorod Arrays with Switchable Wetting Property. Surface and Coatings Technology, 299, 169–176. DOI:10.1016/j.surfcoat.2016.04.056.10.1016/j.surfcoat.2016.04.056
  40. 40. Singh, A., & Singh, S. (2018). ZnO Nanowire-Coated Hydrophobic Surfaces for Various Biomedical Applications. Bulletin of Materials Science, 41(4). DOI:10.1007/s12034-018-1611-5.10.1007/s12034-018-1611-5
DOI: https://doi.org/10.2478/lpts-2022-0004 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 30 - 43
Published on: Feb 2, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 V. Gerbreders, M. Krasovska, I. Mihailova, E. Sledevskis, A. Ogurcovs, E. Tamanis, V. Auksmuksts, A. Bulanovs, V. Mizers, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.