Have a personal or library account? Click to login
Evaluation of Received Signal Power Level and Throughput Depending on Distance to Transmitter in Testbed for Automotive WLAN IEEE 802.11ac Communication Network Cover

Evaluation of Received Signal Power Level and Throughput Depending on Distance to Transmitter in Testbed for Automotive WLAN IEEE 802.11ac Communication Network

Open Access
|Feb 2022

References

  1. 1. Higginbottom, G.N. (1998). Performance Evaluation of Communication Networks. Artech House.
  2. 2. Saunders, S.R., & Aragon-Zavala, A. (2007). Antennas and Propagation for Wireless Communication Systems. John Wiley & Sons Ltd.
  3. 3. Ancans, A., & Petersons, E. (2018). The Relationship between Transport Wireless Network Throughput and Vehicle Speed. Automatic Control and Computer Sciences (AC&CS), 52 (4), 297–305.10.3103/S0146411618040028
  4. 4. Jerjomins, R., Ancans, A., Petersons, E., & Gerina-Ancane, A. (2020). Improving handover mechanism in vehicular WiFi networks. In: ICTE in Transportation and Logistics 2019, Lecture Notes in Intelligent Transportation and Infrastructure (ICTE ToL 2019, LNITI), (pp. 243–261). Ginters E., Ruiz Estrada M., Piera Eroles M., eds. Switzerland, Cham: Springer.10.1007/978-3-030-39688-6_32
  5. 5. Sharp, I., & Yu, K. (ed). (2019). Wireless Positioning: Principles and Practice. Springer Nature Singapore.10.1007/978-981-10-8791-2
  6. 6. Mazuelas, S., ABahillo, A., Lorenzo, R.M., Fernandez, P., Lago, F.A., Garcia, E., … & Abril, E.J. (2009). Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks. IEEE Journal on Selected Topics in Signal Processing, 3 (5), 821–831.10.1109/JSTSP.2009.2029191
  7. 7. Lim, C.B., Kang, S.H., Cho, H.H., Park, S.W., & Park, J.G. (2010). An Enhanced Indoor Localization Algorithm Based on IEEE 802.11 WLAN Using RSSI and Multiple Parameters. In: 5th International Conference on Systems and Networks Communications (pp. 238–242), 22 – 27 August 2020, Nice, France.10.1109/ICSNC.2010.44
  8. 8. Yamamoto, B., Wong, A., Agcanas, P.J., Jones, K., Gaspar, D., Andrade, R., & Trimble, A.Z. (2019). Received Signal Strength Indication (RSSI) of 2.4 GHz and 5 GHz Wireless Local Area Network Systems Projected over Land and Sea for Near-Shore Maritime Robot Operations. Journal of Marine Science and Engineering, 7 (9), 290–306.10.3390/jmse7090290
  9. 9. Mouton, M., Castignani, G., Frank, R., & Engel, T. (2015). Enabling Vehicular Mobility in CityWide IEEE 802.11 Networks through Predictive Handovers. Vehicular Communications, 2 (2), 59–69.10.1016/j.vehcom.2015.02.001
  10. 10. Brodsky, M.Z., & Morris, R.T. (2009). In Defense of Wireless Carrier Sense. Conference on Data Communication, ACM SIGCOMM 2009, 39 (4), 147–158.10.1145/1592568.1592587
  11. 11. Hadaller, D., Keshav, S., Brecht, T., & Agarwal, S. (2007). Vehicular opportunistic communication under the microscope. In: MobiSys ‘07 Proceedings of the 5th International Conference on Mobile Systems, Applications and Services (pp. 206–219), 11 – 13 June 2007, San Juan, Puerto Rico.10.1145/1247660.1247685
  12. 12. Beard, C., & Stallings, W. (2016). Wireless Communication Networks and Systems. Pearson Higher Education, Inc.
  13. 13. Svecko, J., Malajner, M., & Gleich, D. (2015). Distance Estimation Using RSSI and Particle Filter. ISA Transactions, 55, 275–285.10.1016/j.isatra.2014.10.00325457044
  14. 14. Sauter, M. (2017). From GSM to LTE – Advanced Pro and 5G. An Introduction to Mobile Networks and Mobile Broadband (3rd ed.). John Wiley & Sons Ltd.10.1002/9781119346913
  15. 15. Fei, H. (ed.). (2018). VehicletoVehicle and VehicletoInfrastructure Communications: A Technical Approach. CRC Press, Taylor & Francis Group.
  16. 16. Emmelmann, M., Bochow, B., & Kellum, C.C. (ed.). (2010). Vehicular Networking: Automotive Applications and Beyond. John Wiley & Sons Ltd.10.1002/9780470661314
  17. 17. Ancans, G., Stafecka, A., Bobrovs, V., Ancans, A., & Caiko, J. (2017). Analysis of Characteristics and Requirements for 5G Mobile Communication Systems. Latvian Journal of Physics and Technical Sciences, 54 (4), 69–78.10.1515/lpts-2017-0028
  18. 18. Balodis, G. (2011). Diskrētā signālu apstrāde. RTU Izdevniecība.
  19. 19. Beķeris, E. (2010). Signālu teorijas pamati. RTU Izdevniecība.
  20. 20. Haykin, S. (2014). Digital Communication Systems. John Wiley & Sons, Inc.
DOI: https://doi.org/10.2478/lpts-2022-0001 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 12
Published on: Feb 2, 2022
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 A. Ancans, E. Petersons, R. Jerjomins, E. Grabs, G. Ancans, A. Ipatovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.