Have a personal or library account? Click to login
WO3 as Additive for Efficient Photocatalyst Binary System TiO2/WO3 Cover

WO3 as Additive for Efficient Photocatalyst Binary System TiO2/WO3

Open Access
|Dec 2021

References

  1. 1. Ahn, Y. (2003). Variation of Structural and Optical Properties of Sol-Gel TiO2 Thin Films with Catalyst Concentration and Calcination Temperature. Materials Letters, 57 (30), 4660–4666.
  2. 2. Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., & Masjuki, H. H. (2008). Effects of Annealing Treatment on Optical Properties of Anatase TiO 2 Thin Films. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2, 410–414.
  3. 3. Daviðsdóttir, S., Shabadi, R., Galca, A. C., Andersen, I. H., Dirscherl, K., & Ambat, R. (2014). Investigation of DC Magnetron-Sputtered TiO2 Coatings: Effect of Coating Thickness, Structure, and Morphology on Photocatalytic Activity. Applied Surface Science, 313, 677–686.
  4. 4. Regonini, D., & Clemens, F. J. (2015). Anodized TiO2 Nanotubes: Effect of Anodizing Time on Film Length, Morphology and Photoelectrochemical Properties. Materials Letters, 142, 97–101.
  5. 5. Grimes, C. A., & Mor, G. K. (2009). TiO2 Nanotube Arrays. Boston, MA: Springer US.
  6. 6. Sofiane, S., & Bilel, M. (2016). Effect of Specific Surface Area on Photoelectrochemical Properties of TiO2 Nanotubes, Nanosheets and Nanowires Coated with TiC Thin Films. Journal of Photochemistry and Photobiology A: Chemistry, 324, 126–133.
  7. 7. Arifin, K., Yunus, R. M., Minggu, L. J., & Kassim, M. B. (2021). Improvement of TiO2 nanotubes for Photoelectrochemical Water Splitting: Review. International Journal of Hydrogen Energy, 46 (7), 4998–5024.
  8. 8. Khaw, J. S., Curioni, M., Skeldon, P., Bowen, C. R., & Cartmell, S. H. (2019). A Novel Methodology for Economical Scale-Up of TiO2 Nanotubes Fabricated on Ti and Ti Alloys. Journal of Nanotechnology, 2019.
  9. 9. Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (5358), 37–38.
  10. 10. Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., & Grimes, C. A. (2003). Hydrogen Sensing Using Titania Nanotubes. Sensors and Actuators B: Chemical, 93 (1–3), 338–344.
  11. 11. Wu, H., & Zhang, Z. (2011). High Photoelectrochemical Water Splitting Performance on Nitrogen Doped Double-Wall TiO 2 Nanotube Array Electrodes. International Journal of Hydrogen Energy, 36 (21), 13481–13487.
  12. 12. Ismail, A. A., & Bahnemann, D. W. (2014). Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Solar Energy Materials and Solar Cells, 128, 85–101.
  13. 13. Osterloh, F. E. (2008m) Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chemistry of Materials, 20 (1), 35–54.
  14. 14. Qamar, M., Drmosh, Q., Ahmed, M. I., Qamaruddin, M., & Yamani, Z. H. (2015). Enhanced Photoelectrochemical and Photocatalytic Activity of WO3-Surface Modified TiO2 Thin Film. Nanoscale Research Letters, 10 (1), 54.
  15. 15. Liepina, I., Bajars, G., Rublans, M., Kleperis, J., Lusis, A., & Pentjuss, E. (2015). Structure and Photocatalytic Properties of TiO2 -WO3 Composites Prepared by Electrophoretic Deposition. IOP Conference Series: Materials Science and Engineering, 77 (1), 012039.
  16. 16. Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., & Yang, D. (2015). Preparation, Characterization and Photocatalytic Application of TiO2-Graphene Photocatalyst under Visible Light Irradiation. Ceramics International, 41 (2), 2502–2511.
  17. 17. Lu, X., Ma, Y., Tian, B., & Zhang, J. (2011). Preparation and Characterization of Fe–TiO2 Films with High Visible Photoactivity by Autoclaved-Sol Method at Low Temperature. Solid State Sciences, 13 (3), 625–629.
  18. 18. Ola, O., & Maroto-Valer, M. M. (2015). Transition Metal Oxide Based TiO2 Nanoparticles for Visible Light Induced CO2 Photoreduction. Applied Catalysis A: General, 502, 114–121.
  19. 19. Amano, F., Ishinaga, E., & Yamakata, A. (2013). Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation. Journal of Physical Chemistry C, 117 (44), 22584–22590.
  20. 20. Riboni, F., Bettini, L. G., Bahnemann, D. W., & Selli, E. (2013). WO3-TiO2 vs. TiO2 Photocatalysts: Effect of the W Precursor and Amount on the Photocatalytic Activity of Mixed Oxides. Catalysis Today, 209, 28–34.
  21. 21. Yoo, H., Oh, K., Nah, Y. C., Choi, J., & Lee, K. (2018). Single-Step Anodization for the Formation of WO3-Doped TiO2 Nanotubes toward Enhanced Electrochromic Performance. ChemElectroChem, 5 (22), 3379–3382.
  22. 22. Lee, W. H., Lai, C. W., & Abd Hamid, S. B. (2015). In Situ Anodization of WO3-Decorated TiO2 Nanotube Arrays for Efficient Mercury Removal. Materials, 8 (9), 5702–5714.
  23. 23. Nazari, M., Golestani-Fard, F., Bayati, R., & Eftekhari-Yekta, B. (2015). Enhanced Photocatalytic Activity in Anodized WO3-Loaded TiO2 Nanotubes. Superlattices and Microstructures, 80 (4), 91–101.
  24. 24. Regonini, D., Bowen, C. R. R., Jaroenworaluck, A., & Stevens, R. (2013). A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Materials Science and Engineering R: Reports, 74 (12), 377–406.
  25. 25. Khoo, E., Lee, P. S., & Ma, J. (2010). Electrophoretic Deposition (EPD) of WO3 Nanorods for Electrochromic Application. Journal of the European Ceramic Society, 30 (5), 1139–1144.
  26. 26. Lai, C. W., & Sreekantan, S. (2013). Incorporation of WO3 Species into TiO2 Nanotubes via Wet Impregnation and their Water-Splitting Performance. Electrochimica Acta, 87, 294–302.
  27. 27. Patterson, A. L. (1939), The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10), 978–982.
  28. 28. Hunge, Y. M., Mahadik, M. A., Moholkar, A. V., & Bhosale, C. H. (2017). Photoelectrocatalytic Degradation of Oxalic Acid Using WO3 and Stratified WO3/TiO2 Photocatalysts under Sunlight Illumination. Ultrasonics Sonochemistry, 35, 233–242.
  29. 29. Cai, Z.-X., Li, H.-Y., Ding, J.-C., & Guo, X. (2017). Hierarchical Flowerlike WO3 Nanostructures Assembled by Porous Nanoflakes for Enhanced NO Gas Sensing. Sensors and Actuators B: Chemical, 246, 225–234.
  30. 30. Kleperis, J., Zubkans, J., & Lusis, A. R. (1997). Nature of fundamental absorption edge of WO3. In E. A. Silinsh, A. Medvids, A. R. Lusis, & A. O. Ozols (Eds.), Optical Organic and Semiconductor Inorganic Materials (vol. 2968, pp. 186–191). International Society for Optics and Photonics.
  31. 31. Diaz-Reyes, J., Flores-Mena, J. E., Gutierrez-Arias, J. M., Morin-Castillo, M. M., Azucena-Coyotecatl, H., Galván, M., … & Mendez-López, A. (2010). Optical and structural properties of WO3 as a function of the annealing temperature. In Proceedings of the 3rd WSEAS international Conference on Advances in Sensors, Signals and Materials (pp. 99–104), 3–5 November 2010, Faro, Portugal. World Scientific and Engineering Academy and Society (WSEAS).
DOI: https://doi.org/10.2478/lpts-2021-0043 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 24 - 34
Published on: Dec 7, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 A. Knoks, J. Kleperis, G. Bajars, L. Grinberga, O. Bogdanova, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.