Have a personal or library account? Click to login
Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the Cu2ZnSnS4 Absorber of Model Solar Cells Cover

Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the Cu2ZnSnS4 Absorber of Model Solar Cells

Open Access
|Dec 2021

References

  1. 1. Khan, M.R., Patel, M.T., Asadpour, R., Imran, H., Butt, N.Z., & Alam, M.A. (2021). A Review of Next Generation Bifacial Solar Farms: Predictive Modeling of Energy Yield, Economics, and Reliability. Journal of Physics D-Applied Physics, 54 (32), 323001. DOI: 10.1088/1361-6463/abfce5
  2. 2. Veremiichuk, Y., Yarmoliuk, O., Pustovyi, A., Mahnitko, A., Zicmane, I., & Lomane, T. (2020). Features of Electricity Distribution Using Energy Storage in Solar Photovoltaic Structure. Latvian Journal of Physics and Technical Sciences, 5, 18–29. DOI: 10.2478/lpts-2020-0024
  3. 3. Tao, L., Qiu, J., Sun, B., Wang, X., Ran, X., Song, L., …, & Chen, Y. (2021). Stability of Mixed-Halide Wide Bandgap Perovskite Solar Cells: Strategies and Progress. Journal of Energy Chemistry, 61, 395–415. DOI: 10.1016/j.jechem.2021.03.0382095-4956
  4. 4. Bezrukovs, D., Bezrukovs, V., Bezrukovs, Vl., Konuhova, M., & Aniskevich, S. (2020). The Comparison of the Efficiency of Small Wind Turbine Generators with Horizontal and Vertical Axis under Low Wind Conditions. Latvian Journal of Physics and Technical Sciences, 5, 61–72. DOI: 10.2478/lpts-2020-0028
  5. 5. Groza, E., Balodis, M., Gulbis, K., & Dirba, J. (2021). Benefits of Energy Storage Systems for Small-Scale Wind Farm Development in Latvia. Latvian Journal of Physics and Technical Sciences, 2, 11–18. DOI: 10.2478/lpts-2021-0008
  6. 6. Trota, A., Ferreira, P., Gomes, L., Cabral, J., & Kallberg, P. (2019). Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland). Energies, 12 (14), 2838. DOI: 10.3390/en12142838
  7. 7. Ciceron, J., Badel, A., & Tixador, P. (2017). Superconducting Magnetic Energy Storage and Superconducting Self-Supplied Electromagnetic Launcher. European Physical Journal – Applied Physics, 80 (2), 20901. DOI: 10.1051/epjap/2017160452
  8. 8. Zhang, Y., Jia, X., Liu, S., Zhang, B., Lin, K., Zhang, J., & Conibeer, G. (2021). A Review on Thermalization Mechanisms and Prospect Absorber Materials for the Hot Carrier Solar Cells. Solar Energy Materials and Solar Cells, 225, 111073. DOI: 10.1016/j.solmat.2021.111073
  9. 9. Bello, M., & Shanmugan, S. (2020). Achievements in Mid and High-Temperature Selective Absorber Coatings by Physical Vapor Deposition (PVD) for Solar Thermal Application. Journal of Alloys and Compounds, 839, 155510. DOI: 10.1016/j.jallcom.2020.155510
  10. 10. Kaulachs, I., Ivanova, A., Holsts, A., Roze, M., Flerov, A., Tokmakov, A., …, & Rutkis, M. (2021). Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence. Latvian Journal of Physics and Technical Sciences, 1, 53–69. DOI: 10.2478/lpts-2021-0006
  11. 11. Mandal, P., Debbarma, J., & Saha, M. (2021). A Review on the Emergence of Graphene in Photovoltaics Industry. Biointerface Research in Applied Chemistry, 11 (6), 15009–15036. DOI: 10.33263/BRIAC116.1500915036
  12. 12. Sergeyev, D.M., & Duisenova, A.G. (2021). Electron Transport in Model Quasi-Two-Dimensional van der Waals Nanodevices. Technical Physics Letters, 47 (4), 375–378. DOI: 10.1134/S1063785021040295
  13. 13. Meng, Zh., Stolz, R.M., Mendecki, L., & Mirica, K.A. (2019). Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev, 119, 478–598. DOI: 10.1021/acs.chemrev.8b00311
  14. 14. Koch, R.J., Konstantinova, T., Abeykoon, M., Wang, A., Petrovic, C., Zhu, Y., …, & Billinge, L. (2019). Room Temperature Local Nematicity in FeSe Superconductor. Phys. Rev. B, 100, 020501. DOI:10.1103/PhysRevB.100.020501
  15. 15. Sergeyev, D.M. (2013). Plasma Frequency in Josephson Junctions with a Non-Sinusoidal Current-Phase Relation. Solid State Phenomena, 200, 272–275. DOI: 10.4028/www.scientific.net/SSP.200.272
  16. 16. Sergeyev, D.M. (2012). About Tunneling of Pairs of the Cooper Pairs through the Josephson Junctions in Exotic Superconductors. Russian Physics Journal, 55 (1), 84–91. DOI: 10.1007/s11182-012-9779-4
  17. 17. Balakhayeva, R., Akilbekov, A., Baimukhanov, Z., Usseinov, A., Giniyatova, S., Zdorovets, M., …, & Dauletbekova, A. (2021). CdTe Nanocrystal Synthesis in SiO2/Si Ion-Track Template: The Study of Electronic and Structural Properties. Physica Status Solidi A, 218 (1), 2000231. DOI: 10.1002/pssa.202000231
  18. 18. Sergeyev, D.M. (2018). Computer Simulation of Electrical Characteristics of a Graphene Cluster with Stone-Wales Defects. J. Nano-Electron. Phys., 10 (3), 03018. DOI: 10.21272/jnep.10(3).03018
  19. 19. Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S., & Tan, M.L.P. (2021). Low-Dimensional Modelling of n-Type Doped Silicene and its Carrier Transport Properties for Nanoelectronic Applications. Advances in Nano Reseach, 10 (5), 415–422. DOI: 10.12989/anr.2021.10.5.415
  20. 20. Sergeyev, D. (2021). One-Dimensional Schottky Nanodiode Based on Telescoping Polyprismanes. Advances in Nano Reseach, 10 (4), 339–347. DOI: 10.12989/anr.2021.10.4.339
  21. 21. Zeng, X., Lontchi, J., Zhukova, M., Fourdrinier, L., Qadir, I., Ren, Y., …, & Flandre, D. (2021). High-Responsivity Broadband Photodetection of an Ultra-Thin In2S3/CIGS Heterojunction on Steel. Optics Letters, 46 (10), 2288–2291. DOI: 10.1364/OL.423999
  22. 22. Witte, W., Hempel, W., Paetel, S., Menner, R., & Hariskos, D. (2021). Effects of Sputtered InxSy Buffer on CIGS with RbF Post-Deposition Treatment. ECS Journal of Solid State Science and Technology, 10 (5), 055006. DOI: 10.1149/2162-8777/abfc21
  23. 23. Yang, H., Jiang, G., Wang, W., & Mei, X. (2021). Femtosecond Laser Fabrication of Micro and Nano-Structures on CIGS/ITO Bilayer Films for Thin-Film Solar Cells. Materials, 14 (9), 2413. DOI: 10.3390/ma14092413
  24. 24. Novikov, G.F., & Gapanovich, M.V. (2017). Third Generation Cu-In-Ga-(S,-Se) Based Solar Inverters. Phys. Usp., 60, 161–178. DOI: 10.3367/UFNe.2016.06.037827
  25. 25. Milichko, V.A., Shalin, A.S., Mukhin, I.S., Kovrov, A.E., Krasilin, A.A., Vinogradov, A.V., …, & Simovskii, C.R. (2016). Solar Photovoltaics: Current State and Trends. Phys. Usp., 59, 727–772.DOI: 10.3367/UFNe.2016.02.037703
  26. 26. Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., …, & Stokbro, K. (2017). First-Principles Green’s-Function Method for Surface Calculations: A Pseudopotential Localized Basis Set Approach, Phys. Rev. B, 96, 195309. DOI: 10.1103/PhysRevB.96.195309
  27. 27. Atomistix ToolKit. Manual Version. (2015). QuantumWise A/S, 1, 840.
  28. 28. Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films, 361–362, 527–532. DOI: 10.1016/S0040-6090(99)00825-1
  29. 29. Decock, K., Zabierowski, P., & Burgelman, M. (2012). Modeling Metastabilities in Chalcopyrite-Based Thin Film Solar Cells. Journal of Applied Physics, 111, 043703. DOI: 10.1063/1.3686651
  30. 30. Burgelman, M., Decock, K., Khelifi, S., & Abass, A. (2013). Advanced Electrical Simulation of Thin Film Solar Cells. Thin Solid Films, 535, 296–301. DOI: 10.1016/j. tsf.2012.10.032
  31. 31. Decock, K., Khelifi, S., & Burgelman, M. (2011). Modelling Multivalent Defects in Thin Film Solar Cells. Thin Solid Films, 519, 7481–7484. DOI: 10.1016/j.tsf.2010.12.039
  32. 32. Sychikova, Y.A., Kidalov, V.V., & Sukach, G.A. (2013). Dependence of the Threshold Voltage in Indium-Phosphide Pore Formation on the Electrolyte Composition. J. Synch. Investig., 7, 626–630. DOI: 10.1134/S1027451013030130
  33. 33. Suchikova, J. A. (2015). Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide. Journal of Nanoand Electronic Physics, 7 (3), 3017–1.
  34. 34. Eglitis, R., Purans, J., Popov, A. I., & Jia, R. (2019). Systematic Trends in YAlO3, SrTiO3, BaTiO3, BaZrO3 (001) and (111) Surface ab initio Calculations. International Journal of Modern Physics B, 33 (32), 1950390. DOI: 10.1142/S0217979219503909
  35. 35. Eglitis, R., Popov, A. I., Purans, J., & Jia, R. (2020). First Principles Hybrid Hartree-Fock-DFT Calculations of Bulk and (001) Surface F Centers in Oxide Perovskites and Alkaline-Earth Fluorides. Low Temperature Physics, 46 (12), 1206–1212. DOI: 10.1063/10.0002475
  36. 36. Eglitis, R. I., Purans, J., Gabrusenoks, J., Popov, A. I., & Jia, R. (2020). Comparative ab initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces. Crystals, 10 (9), 745. DOI: 10.3390/cryst10090745
  37. 37. Rusevich, L. L., Kotomin, E. A., Zvejnieks, G., & Popov, A. I. (2020). Ab initio Calculations of Structural, Electronic and Vibrational Properties of BaTiO3 and SrTiO3 Perovskite Crystals with Oxygen Vacancies. Low Temperature Physics, 46 (12), 1185–1195. DOI: 10.1063/10.0002472
  38. 38. Krainyukova, N. V., Hamalii, V. O., Peschanskii, A. V., Popov, A. I., & Kotomin, E. A. (2020). Low Temperature Structural Transformations on the (001) Surface of SrTiO3 Single Crystals. Low Temperature Physics, 46 (7), 740–750. DOI: 10.1063/10.0001372
  39. 39. Krainyukova, N. V., Kuchta, B., Firlej, L., & Pfeifer, P. (2020). Absorption of Atomic and Molecular Species in Carbon Cellular Structures. Low Temperature Physics, 46 (3), 219–231. DOI: 10.1063/10.0000705
  40. 40. Suchikova, Y., Vambol, S., Vambol, V., & Mozaffari, N. (2019). Justification of the Most Rational Method for the Nanostructures Synthesis on the Semiconductors Surface. Journal of Achievements in Materials and Manufacturing Engineering, 92 (1–2), 19–28.
  41. 41. Ananyev, M. V., Porotnikova, N. M., & Kurumchin, E. K. (2019). Influence of Strontium Content on the Oxygen Surface Exchange Kinetics and Oxygen Diffusion in La1–xSrxCoO3–δ Oxides. Solid State Ionics, 341, 115052. DOI: 10.1016/j. ssi.2019.115052
  42. 42. Osinkin, D.A., Khodimchuk, A.V., Porotnikova, N.M., Bogdanovich, N.M., Fetisov, A.V., & Ananyev, M.V. (2020). Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ. Energies, 13, 250. DOI: 10.3390/en13010250
  43. 43. Porotnikova, N. M., Vlasov, M. I., Zhukov, Y., Kirschfeld, C., Khodimchuk, A. V., Kurumchin, E. K., ..., & Ananyev, M. V. (2021). Correlation between Structure, Surface Defect Chemistry and 18O/16O Exchange for La2Mo2O9 and La2(MoO4)3. Physical Chemistry Chemical Physics, 23 (22), 12739–12748. DOI: 10.1039/D1CP00401H
  44. 44. Hamalii, V. O., Peschanskii, A. V., Popov, A. I., & Krainyukova, N. V. (2020). Intrinsic Nanostructures on the (001) Surface of Strontium Titanate at Low Temperatures. Low Temperature Physics, 46 (12), 1170–1177. DOI: 10.1063/10.0002470
  45. 45. Ostanina, T. N., Rudoi, V. M., Nikitin, V. S., Darintseva, A. B., Zalesova, O. L., & Porotnikova, N. M. (2016). Determination of the Surface of Dendritic Electrolytic Zinc Powders and Evaluation of its Fractal Dimension. Russian Journal of Non-Ferrous Metals, 57 (1), 47–51. DOI: 10.3103/S1067821216010120
DOI: https://doi.org/10.2478/lpts-2021-0042 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 13 - 23
Published on: Dec 7, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 D. Sergeyev, N. Zhanturina, K. Aizharikov, A.I. Popov, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.