Have a personal or library account? Click to login
Forecasting Algorithm Based on Temperature Error Prediction Using Kalman Filter for Management System Development Cover

Forecasting Algorithm Based on Temperature Error Prediction Using Kalman Filter for Management System Development

Open Access
|Oct 2021

References

  1. 1. Perera, D.W., & Skeie, N. (2016). Comparison of Space Heating Energy Consumption of Residential Buildings Based on Traditional and Model-Based Techniques. Buildings, 7 (2), 27.10.3390/buildings7020027
  2. 2. Galanis, G., Louka, P., Katsafados, P., Pytharoulis, I., & Kallos, G. (2006). Applications of Kalman Filters Based on Non-Linear Functions to Numerical Weather Predictions. Ann. Geophys, 24, 2451–2460.10.5194/angeo-24-2451-2006
  3. 3. Anadranistakis, M., Lagouvardos, K., Kotroni, V., & Skouras, K. (2002). Combination of Kalman Filter and an Empirical Method for the Correction of Near-Surface Temperature Forecasts: Application over Greece. Geophysical Research Letters, 29 (16), 231–234.10.1029/2002GL014773
  4. 4. Libonati, R., Trigo, I., & DaCamara, C. (2008). Correction of 2 m-Temperature Forecasts Using Kalman Filtering Technique. Atmospheric Research, 87, 183–197.10.1016/j.atmosres.2007.08.006
  5. 5. Homleid, M. (1995). Diurnal Corrections of Short-Term Surface Temperature Forecasts Using the Kalman Filter. Weather and Forecasting, 10 (4), 689–707.10.1175/1520-0434(1995)010<;0689:DCOSTS>2.0.CO;2
  6. 6. Brunet, N., Verret, R., & Yacowar, N. (1988). An Objective Comparison of Model Output Statistics and “Perfect Prog Systems” in Producing Numerical Weather Element Forecasts. Weather and Forecasting, 3 (4), 273–281.10.1175/1520-0434(1988)003<;0273:AOCOMO>2.0.CO;2
  7. 7. Bo, P. (2004). A Statistical Method for Forecasting Extreme Daily Temperatures Using ECMWF 2-m Temperatures and Ground Station Measurements. Meteorol, 245–251.10.1017/S1350482704001318
  8. 8. Chai, B., Tushar, W., Hassan, N. U., Yuen, C., & Yang, Z. (2016). Managing energy consumption in buildings through offline and online control of HVAC systems. In IEEE Region 10 Conference (TENCON), (pp. 3368–3373), 22–25 November 2016, Singapore.10.1109/TENCON.2016.7848677
  9. 9. Hadwan, H., & Reddy, P. (2016). Smart Home Control by Using Raspberry Pi & Arduino. International Journal of Advanced Research in Computer and Communication Engineering, 5 (4), 283–288.
  10. 10. Lynggaard, P. (2014). Artificial Intelligence and Internet of Things in a “Smart Home” Context: A Distributed System Architecture. PhD Thesis. Press / Media.
  11. 11. Gomez Ortega, L., Han, L., Whittacker, N., & Bowring, N. (2015). A machine-learning based approach to model user occupancy and activity patterns for energy saving in buildings. In Science and Information Conference, (pp. 474–482), 10–12 June 2015, London, UK.10.1109/SAI.2015.7237185
  12. 12. Zhang, Y., & Handy, I. (2007). Short-Term Prediction of Weather Parameters Using Online Weather Forecasts. Building Simulation 2007, 1411 – 1417.
  13. 13. Mohinder, S., Grewal, & Angus, P. (2008). Kalman filtering: Theory and practice using MATLAB (3rd ed.). New Jersey: John Wiley & Sons.
  14. 14. Rolando, D., Madani, H., Braida, G., Tomasetig, R., & Mohammadi, Z. (2017). Heat pump system control: The potential improvement based on perfect prediction of weather forecast and user occupancy. In 12th IEA Heat Pump Conference 2017, (pp. 1–9), 15–18 May 2017, Rotterdam, Netherlands.
  15. 15. Bogdanovs, N., Bistrovs, V., Ipatovs, A., & Beļinskis, R. (2018). Weather prediction algorithm based on historical data using Kalman filter. In 2018 Advances in Wireless and Optical Communications (RTUWO), (pp. 94–99), 15–16 November 2018, Riga, Latvia.10.1109/RTUWO.2018.8587795
  16. 16. Siroky, J., Oldewurtel, F., Cigler, J., & Prívara, S. (2011). Experimental Analysis of Model Predictive Control for an Energy Efficient Building Heating System. Applied Energy, 88 (9), 3079–3087.10.1016/j.apenergy.2011.03.009
  17. 17. Brown, R.G., & Hwang, P.Y.C. (1997). Introduction to random signals and applied Kalman filtering. Wiley.
DOI: https://doi.org/10.2478/lpts-2021-0038 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 38 - 49
Published on: Oct 8, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 N. Bogdanovs, R. Belinskis, V. Bistrovs, E. Petersons, A. Ipatovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.