Have a personal or library account? Click to login
Metal Oxide Nanostructure-Based Gas Sensor for Carbon Dioxide Detection Cover

Metal Oxide Nanostructure-Based Gas Sensor for Carbon Dioxide Detection

Open Access
|Oct 2021

References

  1. 1. Korotchenkov, G. (2013). Handbook of gas sensor materials. New York: Springer. DOI:10.1007/978-1-4614-7165-310.1007/978-1-4614-7165-3
  2. 2. Liu, X., Cheng, S, Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A Survey on Gas Sensing Technology. Sensors, 12, 9635–9665. DOI: 10.3390/s12070963510.3390/s120709635344412123012563
  3. 3. Janata, J. (2009). Principles of chemical sensors. New York: Springer.10.1007/b136378
  4. 4. Joshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira, O. N., & Lin, L. (2018). A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchimica Acta, 185 (4), 185–213. DOI:10.1007/s00604-018-2750-510.1007/s00604-018-2750-529594538
  5. 5. Kampa, M., & Castanas, E. (2008). Human Health Effects of Air Pollution. Environmental Pollution, 151, 362–367. DOI: 10.1016/j.envpol.2007.06.01210.1016/j.envpol.2007.06.01217646040
  6. 6. Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., … & Preuss, P. W. (2013). The Changing Paradigm of Air Pollution Monitoring, Environmental Science & Technology, 47, 11369−11377. DOI:10.1021/es402260210.1021/es402260223980922
  7. 7. Babadjouni, R., Hodis, D., Radwanski, R., Durazo, R., Patel, A., Liu, Q., & Mack, W. (2017). Clinical Effects of Air Pollution on the Central Nervous System: A Review. Journal of Clinical Neuroscience, 43, 16–24. DOI:10.1016/j.jocn.2017.04.02810.1016/j.jocn.2017.04.028554455328528896
  8. 8. Glencross, D., Ho, T., Camiсa, N., Hawrylowicz, C., & Pfeffer, P. (2020). Air Pollution and its Effects on the Immune System. Free Radical Biology and Medicine, 151, 56–68. DOI:10.1016/j. freeradbiomed.2020.01.17910.1016/j.freeradbiomed.2020.01.179
  9. 9. Lobur, M., Korpyljov, D., Jaworski, N., Iwaniec, M., & Marikutsa, U. (2020). Arduino based ambient air pollution sensing system. In IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), (pp. 32–35), 22-26 April 2020, Lviv, Ukraine: Lviv Polytechnic National University. DOI: 10.1109/MEMSTECH49584.2020.9109460.10.1109/MEMSTECH49584.2020.9109460
  10. 10. Hasenfratz D., Saukh O., Sturzenegger S., &Thiele L. (2012) Participatory air pollution monitoring using smartphones. In Proceedings of the 2nd International Workshop on Mobile Sensing, (pp. 1–5), 16–20 April 2012, Beijing, China.
  11. 11. Galstyan, V., Comini, E., Baratto, C., Faglia, G., & Sberveglieri, G. (2015). Nanostructured ZnO Chemical Gas Sensors. Ceramics International, 41, 14239–14244. DOI:10.1016/j.ceramint.2015.07.05210.1016/j.ceramint.2015.07.052
  12. 12. Zhu, L., & Zeng, W. (2017). Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A, 267, 242–261. DOI:10.1016/j. sna.2017.10.021
  13. 13. Dey, A. (2018). Semiconductor Metal Oxide Gas Sensors: A Review. Materials Science & Engineering B, 229, 206–217. DOI: 10.1016/j.mseb.2017.12.03610.1016/j.mseb.2017.12.036
  14. 14. Yoon, J., Kim, H., Jeong, H., & Lee, J. (2014). Gas Sensing Characteristics of P-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sensors and Actuators B, 202, 263–271. DOI:10.1016/j.snb.2014.05.08110.1016/j.snb.2014.05.081
  15. 15. Moseley, P. T. (2017). Progress in the Development of Semiconducting Metal Oxide Gas Sensors: A Review. Measurement Science and Technology, 28 (8), 082001 (15 p.). DOI:10.1088/1361-6501/aa744310.1088/1361-6501/aa7443
  16. 16. Jing, Z., & Zhan, J. (2008). Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials, 20 (23), 4547–4551. DOI:10.1002/adma.20080024310.1002/adma.200800243
  17. 17. Liu, C., Zhao, L., Wang, B., Sun, P., Wang, Q., … & Lu, G. (2017). Acetone Gas Sensor Based on NiO/ZnO Hollow Spheres: Fast Response and Recovery, and Low (ppb) Detection Limit. Journal of Colloid and Interface Science, 495, 207–215. DOI:10.1016/j.jcis.2017.01.10610.1016/j.jcis.2017.01.10628237094
  18. 18. Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO Nanopetals and its Application as NO2 Gas Sensor. Materials Letters, 152, 189–191. DOI:10.1016/j.matlet.2015.03.11210.1016/j.matlet.2015.03.112
  19. 19. Yu, L., Guo, F., Liu, S., Yang, B., Jiang, Y., … & Fan, X. (2016). Both Oxygen Vacancies Defects and Porosity Facilitated NO 2 Gas Sensing Response in 2D ZnO Nanowalls at Room Temperature. Journal of Alloys and Compounds, 682, 352–356. DOI:10.1016/j.jallcom.2016.05.05310.1016/j.jallcom.2016.05.053
  20. 20. Zhu, L., & Zeng, W. (2017). Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242–261. DOI:10.1016/j.sna.2017.10.02110.1016/j.sna.2017.10.021
  21. 21. Yoon, J.-W., Kim, H.-J., Jeong, H.-M., & Lee, J.-H. (2014). Gas Sensing Characteristics of p-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sensors and Actuators B: Chemical, 202, 263–271. DOI:10.1016/j.snb.2014.05.08110.1016/j.snb.2014.05.081
  22. 22. Deng, S., Chen, N., Deng, D., Li, Y., Xing, X., & Wang, Y. (2015). Meso- and Macroporous Coral-like Co3O4 for VOCs Gas Sensor. Ceramics International, 41 (9), 11004–11012. DOI:10.1016/j.ceramint.2015.05.04510.1016/j.ceramint.2015.05.045
  23. 23. Zoolfakar, A. S., Ahmad, M. Z., Rani, R. A., Ou, J. Z., Balendhran, S., … & Kalantarzadeh, K. (2013). Nanostructured Copper Oxides as Ethanol Vapour Sensors. Sensors and Actuators B: Chemical, 185, 620–627. DOI:10.1016/j.snb.2013.05.04210.1016/j.snb.2013.05.042
  24. 24. Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10 (6), 5469–5502. DOI:10.3390/s10060546910.3390/s100605469324771722219672
  25. 25. Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10 (3), 2088–2106. DOI:10.3390/s10030208810.3390/s100302088326446922294916
  26. 26. Zhang, J., Liu, X., Neri, G., & Pinna, N. (2015). Nanostructured Materials for Room-Temperature Gas Sensors. Advanced Materials, 28 (5), 795–831. DOI:10.1002/adma.20150382510.1002/adma.20150382526662346
  27. 27. Zhu, L., & Zeng, W. (2017). A Novel Coral Rock-like ZnO and its Gas Sensing. Materials Letters, 209, 244–246. DOI:10.1016/j.matlet.2017.08.02010.1016/j.matlet.2017.08.020
  28. 28. Arregui, F. J. (ed.). (2009). Sensors based on nanostructured materials. New York: Springer. DOI:10.1007/978-0-387-77753-510.1007/978-0-387-77753-5
  29. 29. Fort, A., Panzardi, E., Vignoli, V., Hjiri, M., Aida, M., Mugnaini, M., & Addabbo, T. (2019). Co3O4/Al-ZnO Nano-Composites: Gas Sensing Properties. Sensors, 19 (4), 760. doi:10.3390/s1904076010.3390/s19040760641219230781799
  30. 30. Shankar, P., & Rayappan, J. (2015) Gas Sensing Mechanism of Metal Oxides: The Role of Ambient Atmosphere, Type of Semiconductor and Gases – A Review, Science Letters Journal, 4, 126, (18 p.). http://www.cognizure.com/scilett.aspx?p=200638572
  31. 31. Yang, S., Jiang, C., & Wei, S. (2017). Gas Sensing in 2D Materials. Applied Physics Reviews, 4 (2), 021304. DOI:10.1063/1.498331010.1063/1.4983310
  32. 32. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., … & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. DOI:10.3762/bjnano.9.22710.3762/bjnano.9.227614272730254837
  33. 33. Azeez, O. A., Sabry, R. S., Hassan, M. A. M., & Madlul, S. F. (2015). Synthesis and Characteristics of Screen Printed ZnO Thick Films Nanostructures Grown Using Different Methods. Journal of Materials Science: Materials in Electronics, 26 (6), 4051–4061. DOI:10.1007/s10854-015-2944-010.1007/s10854-015-2944-0
  34. 34. Ferraz, H. C., Machado, D. F., & de Resende, N. S. (2017). Nanostructured Screen-Printed Electrodes Based on Titanate Nanowires for Biosensing Applications. Materials Science and Engineering: C, 70, 15–20. DOI:10.1016/j.msec.2016.08.04610.1016/j.msec.2016.08.04627770875
  35. 35. Sarkar, K., Braden, E. V., Bonke, S. A., Bach, U., & Müller-Buschbaum, P. (2015). Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for their Application in Dye-Sensitized Solar Cells. ChemSusChem, 8 (16), 2696–2704. DOI:10.1002/cssc. 20150045010.1002/cssc.201500450
  36. 36. Carotta, M. C., Martinelli, G., Crema, L., Malagù, C., Merli, M., … &Traversa, E. (2001). Nanostructured Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring: Quantitative Analysis on Field Tests. Sensors and Actuators B: Chemical, 76 (1–3), 336–342. DOI:10.1016/s0925-4005(01)00620-710.1016/S0925-4005(01)00620-7
  37. 37. Solis, J. ., Saukko, S., Kish, L., Granqvist, C., & Lantto, V. (2001). Semiconductor Gas Sensors Based on Nanostructured Tungsten Oxide. Thin Solid Films, 391 (2), 255–260. DOI:10.1016/s0040-6090(01)00991-910.1016/S0040-6090(01)00991-9
  38. 38. Zhou, Q., Chen, W., Xu, L., & Peng, S. (2013). Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and their Methane Sensing Properties. Sensors, 13 (5), 6171–6182. DOI:10.3390/s13050617110.3390/s130506171
  39. 39. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., … & Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. In the 8th International Conference on Advanced Optical Materials and Devices (AOMD-8), (9421–23), 25–27 August 2014, Riga, Latvia.10.1117/12.2083960
  40. 40. Krasovska, M., Gerbreders, V., Paskevics, V., Ogurcovs, A., & Mihailova, I. (2015). Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method. Latvian Journal of Physics and Technical Sciences, 52 (5), 28–40. DOI:10.1515/lpts-2015-002610.1515/lpts-2015-0026
  41. 41. Mokoena, T. P., Swart, H. C., & Motaung, D. E. (2019). A Review on Recent Progress of p-Type Nickel Oxide Based Gas Sensors: Future Perspectives. Journal of Alloys and Compounds, 267–294. DOI:10.1016/j. jallcom.2019.06.32910.1016/j.jallcom.2019.06.329
  42. 42. Kim, H.-J., & Lee, J.-H. (2014). Highly Sensitive and Selective Gas Sensors Using p-Type Oxide Semiconductors: Overview. Sensors and Actuators B: Chemical, 192, 607–627. DOI:10.1016/j.snb.2013.11.00510.1016/j.snb.2013.11.005
  43. 43. Ji, H., Zeng, W., & Li, Y. (2019). Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale, 11, 22664–22684. DOI:10.1039/c9nr07699a10.1039/C9NR07699A
  44. 44. Barsan, N., Simion, C., Heine, T., Pokhrel, S., & Weimar, U. (2010). Modelling of Sensing and Transduction for p-Type Semiconducting Metal Oxide Based Gas Sensors. Journal of Electroceramics, 25 (1), 11–19. DOI:10.1007/s10832-009-9583-x10.1007/s10832-009-9583-x
  45. 45. Wurzinger, O., & Reinhardt, G. (2004). CO-sensing Properties of Doped SnO2 Sensors in H2-rich Gases. Sensors and Actuators B: Chemical, 103 (1–2), 104–110. DOI:10.1016/j.snb.2004.04.04110.1016/j.snb.2004.04.041
  46. 46. Ostrick, B., Fleischer, M., Meixner, H., & Kohl, C.-D. (2000). Investigation of the Reaction Mechanisms in Work Function Type Sensors at Room Temperature by Studies of the Cross-Sensitivity to Oxygen and Water: The Carbonate–Carbon Dioxide System. Sensors and Actuators B: Chemical, 68 (1–3), 197–202. DOI:10.1016/s0925-4005(00)00429-910.1016/S0925-4005(00)00429-9
  47. 47. Madou, M. J., & Morrison, S. R. (1989). Chemical sensing with solid state devices. San Diego: Academic Press.
  48. 48. Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., … & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm, 22 (8), 1346–1358. DOI:10.1039/c9ce01556f10.1039/C9CE01556F
DOI: https://doi.org/10.2478/lpts-2021-0036 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 15 - 26
Published on: Oct 8, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 V. Gerbreders, M. Krasovska, I. Mihailova, J. Kostjukevics, E. Sledevskis, A. Ogurcovs, A. Gerbreders, A. Bulanovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.