Have a personal or library account? Click to login
Modelling of Drag Force Reduction for a Waterjet Propulsion System Cover

Modelling of Drag Force Reduction for a Waterjet Propulsion System

Open Access
|Oct 2021

References

  1. 1. Jennings, G. (2007). Motorized water sports, water-based tourism, sport, leisure, and recreation experiences. USA: Elsevier.10.4324/9780080468310
  2. 2. Bertram, V. (2000). Practical ship hydrodynamics. UK: Butterworth-Heinemann.
  3. 3. Shariati, S. K., & Mousavizadegan, S. H. (2017). The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle near the Free Surface. Applied Ocean Research, 67, 31–43. DOI: 10.1016/j.apor.2017.07.00110.1016/j.apor.2017.07.001
  4. 4. Carlton, J. (2018). Marine propellers and propulsion. USA: Butterworth-Heinemann. DOI: 10.1016/B978-0-08-100366-4.00016-X10.1016/B978-0-08-100366-4.00016-X
  5. 5. Cooper, R. D., & Doroff, S. W. (1971). Unsteady propeller forces, fundamental hydrodynamics and unconventional propulsion. Rome, Italy: Office of Naval Research.
  6. 6. Gong, J., Guo, C. Y., Wang, C., Wu, T. C., & Song, K. W. (2019). Analysis of Waterjet-Hull Interaction and its Impact on the Propulsion Performance of a Four-Waterjet-Propelled Ship. Ocean Engineering, 180, 211–222. DOI: 10.1016/j. oceaneng.2019.04.00210.1016/j.oceaneng.2019.04.002
  7. 7. Brandau, J. H. (1968). Performance of Waterjet Propulsion Systems – A Review of the State-of-the-Art. Journal of Hydro-nautics, 2 (2), 61–73. DOI: 10.1109/ULTSYM.2013.033510.1109/ULTSYM.2013.0335
  8. 8. Specialist Committee on Validation of Waterjet Test Procedures. (2005). Final Report and Recommendations to the 23rd ITTC. In Proceedings of 24th International Towing Tank Conference, (pp. 387–415), 26 March 2002, Edinburgh, Scotland: The University of Newcastle.
  9. 9. Bulten, N. W. H. (2006). Numerical analysis of a waterjet propulsion system. Eindhoven, the Netherlands: Technische Universiteit Eindhoven. DOI: 10.6100/IR614907
  10. 10. Hoerner, S. F. (1965). Fluid dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Washington, D.C., USA: Hoerner Fluid Dynamics.
  11. 11. Kandasamy, M., Ooi, S. K., Carrica, P., & Stern, F. (2010). Integral Force/Moment Waterjet Model for CFD Simulations. Journal of fluids engineering, 132 (10), 101103–101112. DOI: 10.1115/1.400257310.1115/1.4002573
  12. 12. Cenqel, Y. A., & Cimbala, J. M. (2017). Fluid mechanics: Fundamentals and applications (4th ed). New York, USA: McGraw-Hill Education.
  13. 13. Molland, A. F. (2011). The maritime engineering reference book: A guide to ship design, construction and operation. Hungary: Elsevier.
  14. 14. Ledoux, M., & Hami, A. E. (2017). Compressible flow propulsion and digital approaches in fluid mechanics. UK: Wiley-ISTE.10.1002/9781119368786
  15. 15. Vutukuru, S. K., Tipans, I., Viba, J., & Irbe, M. (2020). Form optimization and interaction analysis of plane symmetry prism in air. In the 19th International Scientific Conference “Engineering for Rural Development” (pp. 739–746), 20–22 May 2020, Jelgava, Latvia: Latvia University of Life Sciences and Technologies. DOI: 10.22616/ERDev2020.19.TF17010.22616/ERDev.2020.19.TF170
  16. 16. University of Tartu. (2013). Lecture 12. Comparing Measurement Results Using Measurement Uncertainty Estimates. Available at https://sisu.ut.ee/measurement/12-using-measurement-uncertainty-estimates-decision-making
DOI: https://doi.org/10.2478/lpts-2021-0035 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 14
Published on: Oct 8, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 M. Cerpinska, M. Irbe, A. Pupurs, K. Burbeckis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.