Have a personal or library account? Click to login
Methods of Fuzzy Set in Simulation for Predicting Unobserved States of the Ecological and Geoengineering Systems Cover

Methods of Fuzzy Set in Simulation for Predicting Unobserved States of the Ecological and Geoengineering Systems

Open Access
|Aug 2021

References

  1. 1. Michna, J., Ekmanis, J., Zeltins, N., Zebergs, V., & Siemianowicz, J. (2012). Innovation Risk Management in the Rational Energy Use (Part 2). Latvian Journal of Physics and Technical Sciences, 49 (1), 3–15. doi: https://doi.org/10.2478/v10047-012-0001-910.2478/v10047-012-0001-9
  2. 2. Fayyad, U.M., Candel, A., Ario de la Rubia E., Pafka, S., Chong, A., Lee, J-Y. (2017). Benchmarks and Process Management in Data Science: Will We Ever Get Over the Mess? In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 31–32). doi: https://doi.org/10.1145/3097983.312099810.1145/3097983.3120998
  3. 3. Mika, M. (2017). Interoperability Cadastral Data in the System Approach. Journal of Ecological Engineering, 18 (2), 150–156. https://doi.org/10.12911/22998993/6830310.12911/22998993/68303
  4. 4. Dychko, A., Yeremeyev, I., Kyselov, V., Remez, N., & Kniazevych, A. (2019). Ensuring Reliability of Control Data in Engineering Systems. Latvian Journal of Physics and Technical Sciences, 56 (6), 57–69. doi: https://doi.org/10.2478/lpts-2019-003510.2478/lpts-2019-0035
  5. 5. Dychko, A., Remez, N., Kyselov, V., Kraychuk, S., Ostapchuk, N., Kniazevych, A. (2020). Monitoring and Biochemical Treatment of Wastewater. Journal of Ecological Engineering, 21 (4), 150–159. doi: https://doi.org/10.12911/22998993/11981110.12911/22998993/119811
  6. 6. Johnston, M., & Kazemzadeh, E. (2018). U.S. Patent No. 10,114,612. Washington, DC: U.S. Patent and Trademark Office.
  7. 7. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
  8. 8. Zhu, W., Sun, W., & Romagnoli, J. (2018). Adaptive k-Nearest-Neighbor Method for Process Monitoring. Industrial & Engineering Chemistry Research, 57 (7), 2574–2586. doi: 10.1021/acs.iecr.7b0377110.1021/acs.iecr.7b03771
  9. 9. Diduk, N.N. (2014). The Measures of Internal and External Information (on Example of Probabilistic Situations of Uncertainty). Part IV. System Research and Information Technologies, 1, 113–129.
  10. 10. Jurasz, J., Piasecki, A., & Kaźmierczak, B. (2019). Sewage Volume Forecasting on a Day-Ahead Basis – Analysis of Input Variables Uncertainty. Journal of Ecological Engineering, 20 (9), 70–79. doi: https://doi.org/10.12911/22998993/11250710.12911/22998993/112507
  11. 11. Pichler, M., Boreux, V., Klein, A., Schleuning, M., & Hartig F. (2019). Machine Learning Algorithms to Infer Trait-Matching and Predict Species Interactions in Ecological Networks. Methods in Ecology and Evolution, 11, 281–293. doi: 10.1111/2041-210X.1332910.1111/2041-210X.13329
  12. 12. Minhas, R., Kleer, J., Matei, I., Bhaskar, S., Janssen, B., Bobrow, D.G. & Kurtoglu, T. (2014). Using fault augmented modelica models for diagnostics. In Proceedings of the 10th International Modelica Conference 2014 (pp. 437–445), 10-12 March 2014, Lund, Sweden. Linkping University Electronic Press. doi: https://doi.org/10.3384/ecp1409643710.3384/ecp14096437
DOI: https://doi.org/10.2478/lpts-2021-0034 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 69 - 78
Published on: Aug 10, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 I. Yeremeyev, A. Dychko, V. Kyselov, N. Remez, S. Kraychuk, N. Ostapchuk, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.