Have a personal or library account? Click to login
Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method Cover

Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method

Open Access
|Aug 2021

References

  1. 1. Vazquez-Calvo, C., Alvarez De Buergo, M., Fort, R., & Varas-Muriel, M.J. (2012). The Measurement of Surface Roughness to Determine the Suitability of Different Methods for Stone Cleaning. J Geophys Eng, 9, S108–17. https://doi.org/10.1088/1742-2132/9/4/S108.10.1088/1742-2132/9/4/S108
  2. 2. Al-Samarai, R.A.H., Ahmad, K.R., & Al-Douri, Y. (2012). Evaluate the Effects of Various Surface Roughness on the Tribological Characteristics under Dry and Lubricated Conditions for Al-Si Alloy. J Surf Eng Mater Adv Technol, 2, 167–73. https://doi.org/10.4236/jsemat.2012.23027.10.4236/jsemat.2012.23027
  3. 3. Castillejos, E.A.H., & Tania, M.F.F. (2019). Characterization of Roughness, Porosity and Thermal Resistances of Continuous Casting Mold Slag Layers Devitrified and Crystallized in Laboratory. Metall Mater Trans B Process Metall Mater Process Sci, 50 (24), 36–53. https://doi.org/10.1007/s11663-019-01655-4.10.1007/s11663-019-01655-4
  4. 4. Altan, T., & Celik, S. (2020). Effect of surface roughness of the metallic interconnects on the bonding strength in solid oxide fuel cells. Int J Hydrogen Energy, 1–12. https://doi.org/10.1016/j.ijhydene.2020.03.136.10.1016/j.ijhydene.2020.03.136
  5. 5. Günther, J., Leuders, S., Koppa, P., Tröster, T., Henkel, S., Biermann, H., & Niendorf, T. (2018). On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater Des, 143, 1–11. https://doi.org/10.1016/j.matdes.2018.01.042.10.1016/j.matdes.2018.01.042
  6. 6. Bera, B. (2014). Generalized adhesion theory of friction. In Asiat. Conf. (pp. 2–4), 17–20 February 2014, Agra, India.
  7. 7. Anvari, A. (2016). Friction coefficient variation with sliding velocity in copper with copper contact. Period Polytech Mech Eng, 60, 137–41. https://doi.org/10.3311/PPme.8429.10.3311/PPme.8429
  8. 8. Oshita, K., Yanagi, M., Okada, Y., Komiyama, S., & Wang, Z. (2017). Effect of surface roughness on improved lubricity under an ironing condition using a synthetic mica-organic intercalation compound. Tribol Online,12, 193–202. https://doi.org/10.2474/trol.12.193.10.2474/trol.12.193
  9. 9. Zhai, C., Gan, Y., Hanaor, D., Proust, G., & Retraint, D. (2016). The Role of Surface Structure in Normal Contact Stiffness. Exp Mech, 56, 359–68. https://doi.org/10.1007/s11340-015-0107-0.10.1007/s11340-015-0107-0
  10. 10. Manaf, N.D., Fukuda, K., Subhi, Z.A., & Mohd-Radzi, M.F. (2019). Influences of surface roughness on the water adsorption on austenitic stainless steel. Tribol Int, 136, 75–81. https://doi.org/10.1016/j.triboint.2019.03.014.10.1016/j.triboint.2019.03.014
  11. 11. Deendarlianto, A., Takata, Y., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., … & Widyaparaga, A. (2016). The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces. Int J Heat Mass Transf, 101, 1217–26. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.132.10.1016/j.ijheatmasstransfer.2016.05.132
  12. 12. Menezes, P.L., & Kailas, S.V. (2016). Role of surface texture and roughness parameters on friction and transfer film formation when UHMWPE sliding against steel. Biosurface and Biotribology, 2, 1–10. https://doi.org/10.1016/j.bsbt.2016.02.001.10.1016/j.bsbt.2016.02.001
  13. 13. Feng, D., Shen, M., Peng, X.D., & Meng, X.K. (2017). Surface Roughness Effect on the Friction and Wear Behaviour of Acrylonitrile–Butadiene Rubber (NBR) under Oil Lubrication. Tribol Lett, 65, 1–14. https://doi.org/10.1007/s11249-016-0793-5.10.1007/s11249-016-0793-5
  14. 14. Jacobs, T.D.B., Junge, T., & Pastewka, L. (2017). Quantitative Characterization of Surface Topography Using Spectral Analysis. Surf Topogr Metrol Prop, 5, 1-10. https://doi.org/10.1088/2051-672X/aa51f8.10.1088/2051-672X/aa51f8
  15. 15. Erinosho, M.F., Akinlabi, E.T., & Johnson, O.T. (2017). Characterization of Surface Roughness of Laser Deposited Titanium Alloy and Copper Using AFM. Appl Surf Sci, 435, 393–7. https://doi.org/10.1016/j.apsusc.2017.11.131.10.1016/j.apsusc.2017.11.131
  16. 16. Orhadahwe, T.A., Adeleke, A.A., Aweda, J.O., Ikubanni, P.P., & Odusote, J.K. (2020). Microstructural Image Analyses of Mild Carbon Steel Subjected to a Rapid Cyclic Treatment. J Chem Technol Metall, 55, 198–209.
  17. 17. Adeleke, A.A., Ikubanni, P.P., Orhadahwe, T.A., Aweda, J.O., Odusote, J.K., & Agboola, O.O. (2019). Microstructural Assessment of AISI 1021 Steel under Rapid Cyclic Heat Treatment Process. Results Eng; 4, 1–4. https://doi.org/10.1016/j.rineng.2019.100044.10.1016/j.rineng.2019.100044
  18. 18. Jiang, H., Browning, R., Fincher, J., Gasbarro, A., Jones, S., & Sue, H.J. (2008). Influence of Surface Roughness and Contact Load on Friction Coefficient and Scratch Behavior of Thermoplastic Olefins. Appl Surf Sci, 254, 4494–9. https://doi.org/10.1016/j.apsusc.2008.01.067.10.1016/j.apsusc.2008.01.067
  19. 19. Sedlaček, M., Podgornik, B., & Vižintin, J. (2009). Influence of Surface Preparation on Roughness Parameters, Friction and Wear. Wear, 266, 482–7. https://doi.org/10.1016/j.wear.2008.04.017.10.1016/j.wear.2008.04.017
  20. 20. Ivković, B., Djurdjanović, M., & Stamenković, D. (2000). The Influence of the Contact Surface Roughness on the Static Friction Coefficient. Tribol Ind, 22, 41–4.
  21. 21. Ambekar, A.G. (2007). Mechanism and Machine Theory. Eastern Ec. New Delhi: Prentice-Hall of India Private Limited.
  22. 22. Kim, H.Y., Lee, H.J., & Kang, B.H. (2002). Sliding of Liquid Drops Down an Inclined Solid Surface. J Colloid Interface Sci, 247, 372–80. https://doi.org/10.1006/jcis.2001.8156.10.1006/jcis.2001.815616290477
  23. 23. Kumar, V., & Gupta, P. (2012). Importance of Statistical Measures in Digital Image Processing. Int J Emerg Technol Adv, 2, 56–62.
  24. 24. Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E.H. (2007). Image Statistics and the Perception of Surface Qualities. Nature, 447, 206–9. https://doi.org/10.1038/nature05724.10.1038/nature0572417443193
DOI: https://doi.org/10.2478/lpts-2021-0032 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 43 - 54
Published on: Aug 10, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 I. O. Ohijeagbon, A. A. Adeleke, P. P. Ikubanni, T. A. Orhadahwe, G. E. Adebayo, A. S. Adekunle, A. O. Omotosho, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.