References
- 1. Tverda, O., & Vorobiov, V. (2011). Specific Consumption of Explosives at Destroying the Rocks with Different Properties. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 20, 52–58.
- 2. Abdollahisharif, J., Bakhtavar, E., & Nourizadeh, H. (2016). Monitoring and Assessment of Pollutants Resulting from Bench-Blasting Operations. Journal of Mining & Environment, 7 (1), 109–118. DOI: 10.22044/jme.2016.502
- 3. Perelot, T., Kriuchkov, A., & Kravets, V. (2010). Justification of the Method of Gas Suppression and Neutralization of Toxic Gases during Mass Explosions in Quarries. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 19, 178–181.
- 4. Berezhetskyi, A., & Vovk, O. (2004). The Use of Steaming Solutions to Reduce Dust and Gas Emissions in Mass Explosions. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 11, 72–78.
- 5. Kravets, V., Tkachuk, K., & Han, A. (2009). Increasing the Safety and Efficacy of Blasting Operations Using Special Designs Borehole Charges. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 18, 53–57.
- 6. Yurchenko, A. (2010). Reducing Emissions from Mass Explosions in Quarries by Using a Rubber Plug with an Anchor Device as a Stemming of Downhole Charges. Collection of Research Papers of the National Mining University, 35 (2), 111–117.
- 7. Komir, V., Blinkov, V., Romashko, A., & Sokurenko, V. (2007). Impact of Stemming Design on the Crushing Intensity of Rock Models. KSPU Bulletin, 42 (1), 90–92.
- 8. Vorobiov, V. (2000). The Effectiveness of the Use of Rational Design Taps Hole Charges. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 2, 51–53.
- 9. Saharan, M., Sazid, M., & Singh, T. (2017). Explosive Energy Utilization Enhancement with Air-Decking and Stemming Plug, ‘SPARSH’. Procedia Engineering, 191, 1211 – 1217. doi: 10.1016/j.proeng.2017.05.29710.1016/j.proeng.2017.05.297
- 10. Shevkun, E., & Leschinsky, A. (2006). Downhole Charges with Shortened Stemming. Mining Informational and Analytical Bulletin, 4, 139–146.
- 11. Choudhary, B., & Arora, R. (2017). Screened Drill Cuttings in Blasthole for Tamping of Stemming to Reduce Generation of Fly Rock. Journal of Mines, Metals and Fuels, 65 (1), 19–23.
- 12. Zhang, Z. (2016). Rock fracture and blasting: Theory and applications. Butterworth-Heinenmann Elsevier. doi: 10.13140/RG.2.1.1498.2481
- 13. Rehman, A. (2016). Design and development of stemming plug to enhance blast performance. Lahore, Pakistan: University of Engineering and Technology. doi: 10.13140/RG.2.2.15991.47523
- 14. Armstrong, L. (1994). The quality of stemming in assessing blasting efficiency. Sydney, Australia: The University of New South Wales.
- 15. Cevizci, H. (2012). A Newly Developed Plaster Stemming Method for Blasting. Journal of the Southern African Institute of Mining and Metallurgy, 112 (12), 1071–1078.
- 16. Morera de la Vall González, G. (2018). Dust production in mining. Suppression measures in quarry blasting. Madrid, Spain: The Technical University of Madrid (UPM).
- 17. Katanov, I., Kondratyev, S., & Sysoyev, A. (2019). Increasing Safety at Rock Preparation by Blasting in Open Pits. E3S Web of Conferences, 134. Available at https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/60/e3sconf_sdemr18_01017.pdf10.1051/e3sconf/201913401017
- 18. Vorobiov, V., Zakharov, V., Berezhetskyi, A., Yefremov, E., & Barannyk, V. (2003). Reducing Dust And Gas Emission During Mass Explosion in Quarries. Herald of the National Technical University of Ukraine «Kyiv Polytechnic Institute», Series of «Mining», 8, 163–169.
- 19. Tyschuk, V. (2010). Studies of Specific Dust and Gas Emissions during Mass Explosions in Open Pits and Methods for Reducing Harmful Emissions. The collection “Up-to-Date Resource- and Energy-Saving Technologies in Mining Industry”, 1 (5), 127–132.
- 20. Vozgrin, R., Mironov, Yu., & Moldovan, D. (2013). To the Question of the Properties of the Material for the Manufacture of Borehole and Drill Stemming. Problems of Geology and Subsurface Development, 11 (2), 304–305.
- 21. Katanov, I., & Skachilov, P. (2015). Improving the Design of Borehole Charge with Foam-Gel Tamping. Bulletin of the Kuzbass State Technical University, 5, 43–46.
- 22. Shevkun, E., Leschinsky, A., Galimjanov, A., & Rudnitsky, K. (2014). Production Tests of Combined Shothole Stemming. Mining Informational and Analytical Bulletin, 4, 97–107.
- 23. Leschinsky, A. (2014). Design Development Stemming Blast Holes. Electronic scientific journal “Scientists Notes PNU”, 5 (2), 66–71. Available at http://pnu.edu.ru/media/ejournal/articles-2014/TGU_5_57.pdf
- 24. Shevkun, E., Leschinsky, A., & Galimjanov, A. (2015). Short Combined Stopper Explosive Chinks of High Locking Ability. Mining Informational and Analytical Bulletin, 4, 331–336.
- 25. Leschinsky, A., & Shevkun, E. (2008). Clogging blast holes in quarries. Khabarovsk: Pacific National University.
- 26. Gurin, A., Ermak, L., & Teterya, O. (2008). Analytical Researches of Influence of Auxiliary Materials of Punches of Explosives in Wells on Change of Parameters of Chemical Reactions of Explosion and Structure of Products of Explosion. Labor and Environmental Protection at the Enterprises of the Mining and Metallurgical Complex, 10, 196–200.
- 27. Tverda, O., & Vorobiov, V. (2012). Justification of the Selection Criterion of a Safe and Effective Type of Explosive during Mass Explosions in Open Pits. Collection of scientific works “Occupational Health and Safety Issues in Ukraine”, 22, 56–64.
- 28. Tverda, O., & Plyatsuk, L. (2018). The Design of Borehole Plug with a Two-Stage Absorbing System for Harmful Gases. The collection “Up-to-Date Resource- and Energy-Saving Technologies in Mining Industry”, 1 (21), 103–115.10.30929/2074-1537.2018.1.103-115
- 29. Zvyagintseva, A., & Zavyalova, A. (2015). Analysis of the Basic Technological and Engineering Measures Aimed at Reducing Dust and Gas Emissions Mass Explosion at the Quarry Mining and Processing Plant. Heliogeophysical Research. Available at http://vestnik.geospace.ru/index.php?id=285
- 30. Prymyska, S., Beznosyk, Yu., Statyukha, G., & Reshetilowski, W. (2010). Prospects for Purification of Thermal Energy Exhaust Gases on Synthetic Zeolites. Bulletin of NTU “KhPI”, 10, 70–77.
- 31. Tverda, O., Plyatsuk, L., Repin, M., & Tkachuk, K. (2018). Controlling the Process of Explosive Destruction of Rocks in Order to Minimize Dust Formation and Improve Quality of Rock Mass. Eastern-European Journal of Enterprise Technologies, 3 (10), 35–42. doi: 10.15587/1729-4061.2018. 133743