Have a personal or library account? Click to login
Analysis of the Role of the Latvian Natural Gas Network for the use of Future Energy Systems: Hydrogen from Res Cover

Analysis of the Role of the Latvian Natural Gas Network for the use of Future Energy Systems: Hydrogen from Res

Open Access
|Jun 2021

References

  1. 1. European Commission. (2020). Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration. Brussels, 8.7.2020, COM (2020) 299 final. Available at https://ec.europa.eu/energy/sites/ener/files/energy_system_integration_strategy_.pdf
  2. 2. European Commission. (2019). Hydrogen. Available at https://ec.europa.eu/energy/topics/energy-system-integration/hydrogen_en
  3. 3. BloombergNEF. (2020). Hydrogen Economy Outlook. Available at https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf
  4. 4. European Hydrogen Backbone. (2020). European Hydrogen Backbone – Gas for Climate 2050. Available at https://gasforclimate2050.eu/sdm_downloads/european-hydrogen-backbone/
  5. 5. GRTgaz. (2019). Technical and Economic Conditions for Injecting Hydrogen into Natural Gas Networks. Final report, France. Available at https://www.grtgaz.com/fileadmin/plaquettes/en/2019/Technical-economic-conditions-for-injecting-hydrogen-into-natural-gas-networks-report2019.pdf
  6. 6. Pellegrini, M., Guzzini, A., & Saccani, C. (2020). A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network. Energies, 13, 5570. doi:10.3390/en1321557010.3390/en13215570
  7. 7. HyDeploy. (2020). Is a Pioneering Hydrogen Energy Project Designed to Help Reduce UK CO2 Emissions. Available at https://hydeploy.co.uk/
  8. 8. Ministry for Environmental Protection and Regional Development. (2019). Latvia’s Strategy for Climate Neutrality by 2050. Available at https://unfccc.int/sites/default/files/resource/LTS1_Latvia.pdf
  9. 9. Conexus Baltic Grid. (2020). Is a Unified Natural Gas Transmission and Storage Operator in Latvia. Available at https://www.conexus.lv/en
  10. 10. Zemite, L., Kutjuns, A., Bode, I., Kunickis, M., & Zeltins, N. (2018). Risk Treatment and System Recovery Analysis of Gas System of Gas and Electricity Network of Latvia. Latvian Journal of Physics and Technical Sciences, 55 (5), 3–14. doi: 10.2478/lpts-2018-003110.2478/lpts-2018-0031
  11. 11. Zemite, L., Bode, I., Zeltins, N., Kutjuns, A., & Zbanovs, A. (2018). Analysis of the power system damage hazard from the point of view of the gas supply system. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, (art. no. 8494380), 12–15 June 2018, Palermo, Italy. doi: 10.1109/EEEIC.2018.849438010.1109/EEEIC.2018.8494380
  12. 12. Koposovs, A., Bode, I., Zemite, L., Selickis, A., & Jasevics, (2019). A. Optimization of the Selection Method for Reconstruction of Outworn Gas Distribution Pipeline. Latvian Journal of Physics and Technical Sciences, 56 (5), 33–44, doi: 10.2478/lpts-2019-002910.2478/lpts-2019-0029
  13. 13. Storeenergy. (n.d.). Energy Storage Report. Available at https://www.storengy.com/en/our-jobs/renewable-gases/our-latest-projects
  14. 14. Savickis, J., Zemite, L., Zeltins, N., Selickis, A., & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–50. doi: 10.2478/lpts-2020-002010.2478/lpts-2020-0020
  15. 15. AST. (2020). Latvian Electricity Market Overview. Available at https://www.ast.lv/en/electricity-market-review?year=2018&month=13
  16. 16. Telicko, J., Heincis, D., & Jakovics, A. (2020). A Study of Solar Panel Efficiency in Latvian Climate Conditions. E3S Web of Conferences, 172, 1–4. https://doi.org/10.1051/e3sconf/20201721600710.1051/e3sconf/202017216007
  17. 17. Lauka, D., Pakere, I., & Blumberga, D. (2018). First Solar Power Plant in Latvia. Analysis of Operational Data. Energy Procedia, 147, 162–165. https://doi.org/10.1016/j.egypro.2018.07.04910.1016/j.egypro.2018.07.049
  18. 18. Soloha, R., Pakere, I., & Blumberga, D. (2017). Solar Energy Use in District Heating Systems. A Case Study in Latvia. Energy, 137, 586–594. https://doi.org/10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151
  19. 19. CSP. (2018). Latvijas energobilance 2017. gadā. Availabe at https://www.csb.gov.lv/lv/statistika/statistikas-temas/videenergetika/energetika/meklet-tema/332-energobilance-2017-gada
  20. 20. Aniskevich, S., Bezrukovs, V., Zandovskis, U., & Bezrukovs, D. (2017). Modelling the Spatial Distribution of Wind Energy Resources in Latvia. Latvian Journal of Physics and Technical Sciences, 54 (6), 10–20. https://doi.org/10.1515/lpts-2017-003710.1515/lpts-2017-0037
  21. 21. Cabinet of Ministers. (2017). Regulation No. 78. Regulations Regarding the Trade and Use of Natural Gas. Latvijas Vēstnesis. Available at https://likumi.lv/ta/id/289031
  22. 22. Ministru kabinets. (2016). Ministru kabineta 2016. gada 4. oktobra noteikumi Nr. 650 Prasības biometāna un gāzveida stāvoklī pārvērstas sašķidrinātās dabasgāzes ievadīšanai un transportēšanai dabasgāzes pārvades un sadales sistēmā. Latvijas Vēstnesis. Available at https://likumi.lv/ta/id/285189
DOI: https://doi.org/10.2478/lpts-2021-0027 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 214 - 226
Published on: Jun 24, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 J. Kleperis, D. Boss, A. Mezulis, L. Zemite, P. Lesnicenoks, A. Knoks, I. Dimanta, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.