Have a personal or library account? Click to login
Heat Load Numerical Prediction for District Heating System Operational Control Cover

Heat Load Numerical Prediction for District Heating System Operational Control

Open Access
|Jun 2021

References

  1. 1. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law), COM/2020/80 final. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588581905912&uri=CELEX:52020PC0080
  2. 2. Central Statistical Bureau. (n.d.). Statistical Yearbook of Latvia 2020. Available at https://www.csb.gov.lv/en/statistics/statistics-by-theme/economy/gdp/search-in-theme/400-statistical-yearbook-latvia-2020
  3. 3. Latvenetrgo (n.d.). Ražošana. Available at https://latvenergo.lv/en/par-mums/razosana/tec2-siltuma-akumulacija
  4. 4. Epp, B. (2019). 15 MW SDH Plant Inaugurated in Latvia. Available at https://www.solarthermalworld.org/news/15-mwsdh-plant-inaugurated-latvia
  5. 5. Burkhardt. (n.d.). Biomass Power Plants: Cogeneration with Wood. Available at https://www.fortum.com/about-us/our-company/our-energy-production/our-power-plants/jelgava-chp-plant
  6. 6. Soročins, A., Rusovs, D., Nagla, J., & Žentiņš, V. (2020). The influence of the thermal storage on the electricity production in a co-generation in peak and off-peak time range. In 2020 IEEE 61st International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2020), (pp. 1–4), 5–6 November 2020, Riga, Latvia.10.1109/RTUCON51174.2020.9316576
  7. 7. Sauhats, A., Kozadajevs, J., Dolgicers, A., Zalitis, I., & Boreiko, D. (2019). Thermal energy storage for CHP in power market conditions. In 2019 16th International Conference on the European Energy Market (EEM), 18–20 September 2019, Ljubljana, Slovenia.10.1109/EEM.2019.8916485
  8. 8. Ivanova, P., Sauhats, A., Linkevics, O., & Balodis, M. Combined heat and power plants towards efficient and flexible operation. In 2016 IEEE 16th International Conference on Environmental and Electrical Engineering (EEEIC), (pp. 2434–2439), 7–10 June 2016, Italy, Florence.10.1109/EEEIC.2016.7555874
  9. 9. Latõšov, E., Volkova, A., Hlebnikov, A., & Siirde, A. (2018). Technical Improvement Potential of Large District Heating Network: Application to Case of Tallinn, Estonia. Energy Procedia, 149, 337–344.10.1016/j.egypro.2018.08.197
  10. 10. Howard, D.A, Filonenko, K., Busk, F.S., & Veje, Ch. (2020). Methodology for evaluation of district heating network efficiency. In 3rd International Conference on Electrical Engineering and Green Energy (CEEGE 2020), (pp. 1–9), 27–29 June 2020, Munich, Germany.10.1051/e3sconf/202018601006
  11. 11. Turlajs, D., Soročins, A., Cers, A., & Žīgurs, Ā. (2009). The Dependence of Quality and Efficiency of District Heating on the Type of Load Regulation. Mehānika, 31, 137–146.
  12. 12. Kral, E., Kostalova, A., Capek, P., & Vasek. L. (2018). Algorithm for central heating heat load modelling. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI), (pp. 1438 – 1439), 12–14 December 2018, Las Vegas, USA.10.1109/CSCI46756.2018.00279
  13. 13. Soročins, A., Nagla, J., & Žentiņš, V. (2019). District heating simulation model development to solve optimization problems in the market conditions. In 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2019), (pp. 1–5), 7–9 October 2019, Riga, Latvia
  14. 14. Petrichenko, R., Baltputnis, K., Sauhats, A., & Sobolevsky, D. (2017). District heating demand short-term forecasting. In 17th International Conference on Environment and Electrical Engineering (IEEE EEEIC 2017), 6–9 June 2017, Milan, Italy.10.1109/EEEIC.2017.7977633
  15. 15. Baltputnis, K., Petrichenko R., & Sobolevsky, D. (2018). Heating demand forecasting with multiple regression: Model setup and case study. In 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 8–10 November 2018, Vilnius, Lithuania10.1109/AIEEE.2018.8592144
  16. 16. Jovanović, R.Ž., Sretenović, A.A., & Živković, B.D. (2015). Ensemble of Various Neural Networks for Prediction of Heating Energy Consumption. Energy and Buildings, 94, 189–199.10.1016/j.enbuild.2015.02.052
  17. 17. Baltputnis, K., Petrichenko, R., & Sauhats, A. (2017). ANN-based city heat demand forecast. In 12th IEEE PES PowerTech Conference towards and beyond Sustainable Energy Systems, (pp. 1–6), 18–22 June 2017, Manchester, United Kingdom.10.1109/PTC.2017.7981097
  18. 18. Blumberga, D., Blumberga, A., & Vitolins, V. Energy Audits in Dwelling Buildings in Latvia. Data Analysis. In Dynastee 2005 Scientific Conference, 12–14 October 2005, Athens, Greece.
  19. 19. Talcis, N., Dzelzītis, E., & Līckrastiņa, A. (2018). Return Temperature in DH as Key Parameter for Energy. International Journal of Modern Engineering Research, 8 (7), 88–92.
DOI: https://doi.org/10.2478/lpts-2021-0021 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 121 - 136
Published on: Jun 24, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 D. Rusovs, L. Jakovleva, V. Zentins, K. Baltputnis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.