Have a personal or library account? Click to login
Assessment of PV Integration in the Industrial and Residential Sector under Energy Market Conditions Cover

Assessment of PV Integration in the Industrial and Residential Sector under Energy Market Conditions

Open Access
|Jun 2021

References

  1. 1. IEA. (2018). Renewables 2018. Analysis and forecasts to 2023. Available at https://www.iea.org/reports/renewables-2018
  2. 2. Power Technology (2020). The World’s Most Used Renewable Power Sources. Available at https://www.power-technology.com/features/featurethe-worlds-most-used-renewable-power-sources-4160168
  3. 3. Feldman, D., Barbose, G., Margolis, R., Wiser, R., Goodrich, A., & Darghouth, N. (2012). Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections. Available at https://www.nrel.gov/docs/fy13osti/56776.pdf
  4. 4. Mutule, A., Zikmanis, I., & Dumitrescu, A.-M. (2020). Electric Consumption Assessment Using Smart Meter Data and KPI Methodology. Latvian Journal of Physics and Technical Sciences, 57 (3), 3–19. doi: 10.2478/lpts-2020-0011.10.2478/lpts-2020-0011
  5. 5. Sauhats, A., Zemīte, L., Petričenko, Ļ., Moškins, I., Jasevičs, A. (2018). Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices. Energies, 11 (11), 1–19. doi:10.3390/en11113222.10.3390/en11113222
  6. 6. IRENA. (2015). Renewable Energy Options for the Industry Sector: Global and Regional Potential until 2030. Available at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/Aug/IRENA_RE_Potential_for_Industry_BP_2015.pdf
  7. 7. Mekhilef, S., Rahman, S. & Safari, A. (2011). A Review on Solar Energy Use in Industries. Renewable and Sustainable Energy Reviews, 15 (4), 1777–1790.10.1016/j.rser.2010.12.018
  8. 8. Ma, J., Elkasrawy, A., Yu, D., & Venkatesh, B. (2015). Demand Response Literature Review. Ryerson University. Centre for Urban Energy. Available at https://www.ryerson.ca/content/dam/cue/pdfs/FinalDemandResponse.pdf
  9. 9. Goldman, C., Reid, M., Levy, R., & Silverstein, A. (2010). Coordination of Energy Efficiency and Demand Response. US: Lawrence Berkeley National Lab. doi:10.2172/981732.10.2172/981732
  10. 10. SEDC. (2017). Explicit Demand Response in Europe – Mapping the Markets 2017. Belgium, Brussels. Available at https://smarten.eu/wp-content/uploads/2017/04/SEDC-Explicit-Demand-Response-in-Europe-Mapping-the-Markets-2017.pdf
  11. 11. European Commission. (2012). Annual Report on Small and Medium-Sized Enterprises in EU. Belgium, Brussels.
  12. 12. European Parliament. (2012). Directive 2012/27/EU on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Official Journal of the European Union, L315/1.
  13. 13. Arnold, K., & Janssen, T. (2016). Demand side management in industry – necessary for a sustainable energy system or a backward step in terms of improving efficiency? In ECEEE Industrial Summer Study, (pp. 339–350), 12–14 September 2016, Kalkscheune, Berlin, Germany.
  14. 14. Castro, P., Harjunkoski, I., & Grossmann, I. (2011). Optimal Scheduling of Continuous Plants with Energy Constraints. Computers & Chemical Engineering, 35, 372–387. doi:10.1016/j.compchemeng.2010.05.00810.1016/j.compchemeng.2010.05.008
  15. 15. Haït, A., & Artigues, C. (2011). On Electric Load Tracking Scheduling for a Steel Plant. Computers & Chemical Engineering, 35, 3044–3047. doi: 10.1016/j.compchemeng. 2011.03.006
  16. 16. Leo, E., & Engell, S. (2018). Integrated Day-Ahead Energy Procurement and Production Scheduling. Automatisierungstechnik, 66, 950–963. doi:10.1515/auto-2018-0016.10.1515/auto-2018-0016
  17. 17. Solargis. (n.d.). SolarGIS Map. Available at https://solargis.com/maps-and-gis-data/download/
  18. 18. Solenergo. (n.d.). Solar Batteries. Available at http://solenergo.lv/saules-baterijas (in Latvian).
  19. 19. Latvian Environment, Geology and Meteorology Centre. (n.d.). Meteorological Data Availability. Available at https://www.meteo.lv/meteorologija-datu-pieejamiba/?iBy=parameter&nid=462&pMonitoringType=METEOROLOGY&iParameter=4220&iStation=30046
  20. 20. SolarEdge. (n.d.). SolarEdge Monitoring Platform. Available at https://monitoringpublic.solaredge.com/solaredge-web/p/home/public?locale=en_US
  21. 21. Chris, G. (2009). Direct and Indirect Uncertainties in the Prediction of Tilted Irradiance for Solar Engineering Applications. Solar Energy, 83 (3), 432–444. doi: 10.1016/j.solener.2008.11.004.10.1016/j.solener.2008.11.004
  22. 22. Short, W., Packey, D.J. & Holt, T. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. Colorado. Available at http://www.nrel.gov/docs/legosti/old/5173.pdf10.2172/35391
  23. 23. Petričenko, Ļ., Broka, Z., Sauhats, A., & Bezrukovs, D. (2018). Cost-Benefit Analysis of Li-Ion Batteries in a Distribution Network. In 2018 15th International Conference on the European Energy Market (EEM 2018), (pp. 1–5), 27–29 June 2018, Lodz, Poland. doi:10.1109/EEM.2018.846978210.1109/EEM.2018.8469782
  24. 24. Kessler, W. (2017). Comparing Energy Payback and Simple Payback Period for Solar Photovoltaic Systems. E3S Web of Conferences, 22 (12): 00080. doi:10.1051/e3sconf/20172200080.10.1051/e3sconf/20172200080
  25. 25. Fahnehjelm, C., & Amting, V. (2016). Evaluation of Cost Competitiveness and Payback Period of Grid-Connected Photovoltaic Systems in Sri Lanka. The Royal Institute of Technology. Available at http://www.diva-portal.org/smash/get/diva2:1069584/FULLTEXT01.pdf
  26. 26. AS Sadales tīkls. (2020). Electricity Distribution Differential Tariffs. Available at https://www.sadalestikls.lv/uploads/2020/01/ST_tarifi_2020.pdf
  27. 27. SPRK (n.d.). Mandatory Procurement Component. Available at https://www.sprk.gov.lv/en/node/128
  28. 28. Nord Pool. (n.d.). Nord Pool Electrical Energy Price Statistics. Available at http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/
  29. 29. Bank of Latvia. (n.d.). Bank Interest Rates. Available at https://www.bank.lv/statistika/dati-statistika/procentu-likmju-statistikasraditaji/galvenas-procentu-likmes [in Latvian]
  30. 30. Ministry of Economics. (n.d.). Field Policy. Available at https://www.em.gov.lv/files/nozares_politika/ELIS_NETO_10.08.2018_nodevums.pdf (in Latvian).
  31. 31. GAAS. (n.d.). Estonia’s Largest Solar Plant Started operating in Parnu. Available at https://www.gaas.ee/en/estonia-s-largest-solar-power-plant-started-operating-inparnu/ (in Estonian).
  32. 32. Petričenko, Ļ., Zemīte, L., Sauhats, A., Klementavicius, A., & Grickevics, K. A Comparative analysis of supporting policies for solar Pv systems in the Baltic Countries. In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, (pp. 1–6), 11–14 June 2019, Genoa, Italy. doi:10.1109/EEEIC.2019.8783838.10.1109/EEEIC.2019.8783838
  33. 33. Zemīte, L., Sauhats, A., Petričenko, Ļ., Kozadajevs, J., & Bezrukovs, D. (2018). Elektroenerģijas NETO sistēmas izvērtējums un priekšlikumi sistēmas uzlabojumiem. RTU. Available at https://www.em.gov.lv/lv/media/649/download (in Latvian).
DOI: https://doi.org/10.2478/lpts-2021-0018 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 82 - 97
Published on: Jun 24, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 L. Petrichenko, J. Kozadajevs, R. Petrichenko, O. Ozgonenel, D. Boreiko, A. Dolgicers, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.