Have a personal or library account? Click to login
Power Plant Cooperation In District Heating Considering Open Electricity Market Cover

Power Plant Cooperation In District Heating Considering Open Electricity Market

By: R. Oleksijs,  A. Sauhats and  B. Olekshii  
Open Access
|Jun 2021

References

  1. 1. Fleiter, T., Steinbach, J., & Ragwitz, M. (2016). Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). European Commission Directorate-General for Energy. Available at https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en
  2. 2. Deshko, V. I., Zamulko, A. I., Karpenko, D. S., Mahnitko, A., & Linkevics, O. (2018). Evaluation of the district heating market efficiency as the function of its size and number of competing suppliers. In 2018 IEEE 59th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2018 (pp. 1–7), 12–14 November 2018, Riga, Latvia. doi:10.1109/RTUCON.2018.8659907.10.1109/RTUCON.2018.8659907
  3. 3. Dorfner, J., & Hamacher, T. (2014). Large-Scale District Heating Network Optimization. IEEE Transactions on Smart Grid, 5 (4), 1884–1891. doi:10.1109/TSG.2013.229585610.1109/TSG.2013.2295856
  4. 4. Ivanova, P., Sauhats, A., Linkevics, O., & Balodis, M. (2016). Combined heat and power plants towards efficient and flexible operation. In EEEIC 2016 – International Conference on Environment and Electrical Engineering (2434–2439), 7–10 June 2016, Florence, Italy. doi:10.1109/EEEIC.2016.7555874.10.1109/EEEIC.2016.7555874
  5. 5. Rezaie, B., & Rosen, M. A. (2012). District Heating and Cooling: Review of Technology and Potential Enhancements. Applied Energy, 93, 2–10. doi:10.1016/j.apenergy.2011.04.020.10.1016/j.apenergy.2011.04.020
  6. 6. EuroHeat & Power. (2013). District Heating and Cooling. Country by Country Survey 2013. Available at http://www.euroheat.org/Publications/
  7. 7. Hemmes, K., Zachariah-Wolf, J. L., Geidl, M., & Andersson, G. (2007). Towards Multi-Source Multi-Product Energy Systems. International Journal of Hydrogen Energy, 32 (10–11), 1332–1338. doi:10.1016/j. ijhydene.2006.10.013.
  8. 8. Shabanpour-Haghighi, A., & Seifi, A. R. (2016). An Integrated Steady-State Operation Assessment of Electrical, Natural Gas, and District Heating Networks. IEEE Transactions on Power Systems, 31 (5), 3636–3647. doi:10.1109/TPWRS.2015.2486819.10.1109/TPWRS.2015.2486819
  9. 9. Rolfsman, B. (2004). Combined Heat-and-Power Plants and District Heating in a Deregulated Electricity Market. Applied Energy, 78 (1), 37–52. doi:10.1016/S0306-2619(03)00098-9.10.1016/S0306-2619(03)00098-9
  10. 10. Mathiesen, B. V., & Lund, H. (2009). Comparative Analyses of Seven Technologies to Facilitate the Integration of Fluctuating Renewable Energy Sources. IET Renewable Power Generation, 3 (2), 190–204. doi:10.1049/iet-rpg:20080049.10.1049/iet-rpg:20080049
  11. 11. Bioenergy Europe. (n.d.). Statistical Report. Available at https://bioenergyeurope.org/statistical-report.html
  12. 12. Uris, M., Linares, J. I., & Arenas, E. (2015). Size Optimization of a Biomass-Fired Cogeneration Plant CHP/CCHP (Combined Heat and Power/Combined Heat, Cooling and Power) Based on Organic Rankine Cycle for a District Network in Spain. Energy, 88, 935–945. doi:10.1016/j. energy.2015.07.054.
  13. 13. Schneider, T., Müller, D., & Karl, J. (2020). A Review of Thermochemical Biomass Conversion Combined with Stirling Engines for the Small-Scale Cogeneration of Heat and Power. Renewable and Sustainable Energy Reviews, 134. doi:10.1016/j.rser. 2020.110288.
  14. 14. Liu, X., Wu, J., Jenkins, N., & Bagdanavicius, A. (2016). Combined Analysis of Electricity and Heat Networks. Applied Energy, 162, 1238–1250. doi:10.1016/j.apenergy.2015.01.102.10.1016/j.apenergy.2015.01.102
  15. 15. Wang, J., You, S., Zong, Y., Traeholt, C., Zhou, Y., & Mu, S. (2019). Optimal Dispatch of Combined Heat and Power Plant in Integrated Energy System: A State of the Art Review and Case Study of Copenhagen. Energy Procedia, 158, 2794–2799. doi:10.1016/j.egypro.2019.02.040.10.1016/j.egypro.2019.02.040
  16. 16. Geidl, M., & Andersson, G. (2007). Optimal Power Flow of Multiple Energy Carriers. IEEE Transactions on Power Systems, 22 (1), 145–155. doi:10.1109/TPWRS.2006.888988.10.1109/TPWRS.2006.888988
  17. 17. Fanti, M. P., Mangini, A. M., Roccotelli, M., & Ukovich, W. (2015). A District Energy Management Based on Thermal Comfort Satisfaction and Real-Time Power Balancing. IEEE Transactions on Automation Science and Engineering, 12 (4), 1271–1284. doi:10.1109/TASE.2015.2472956.10.1109/TASE.2015.2472956
  18. 18. Borcsok, E., Gersc, A., & Fulop, J. (2018). Applying Multiobjective Optimization for the Heat Supply in the Residential Sector in Budapest. In SACI 2018 – IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, (pp. 213–217), 17–19 May 2018, Timisoara, Romania. doi:10.1109/SACI.2018.8440986.10.1109/SACI.2018.8440986
  19. 19. Siewierski, T., Pajak, T., & Delag, M. (2018). Optimisation of cogeneration units in large heating systems. In International Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA (pp. 1–7), 6–8 December 2017, Colombo, Sri Lanka. doi:10.1109/SKIMA.2017.8294129.10.1109/SKIMA.2017.8294129
  20. 20. Chen, Y., Xu, Y., Li, Z., Feng, S., Hu, C., & Hai, K. L. (2019). Optimally coordinated operation of a multi-energy microgrid with coupled electrical and heat networks. In 2018 International Conference on Power System Technology, POWERCON 2018, (pp. 218–224), 6–8 November 2018, Guangzhou, China. doi:10.1109/POWERCON.2018.8602048.10.1109/POWERCON.2018.8602048
  21. 21. Zhou, H., Li, Z., Zheng, J. H., Wu, Q. H., & Zhang, H. (2020). Robust Scheduling of Integrated Electricity and Heating System Hedging Heating Network Uncertainties. IEEE Transactions on Smart Grid, 11 (2), 1543–1555. doi:10.1109/TSG.2019.2940031.10.1109/TSG.2019.2940031
  22. 22. Reynolds, J., Ahmad, M. W., & Rezgui, Y. (2018). District heating energy generation optimisation considering thermal storage. In 2018 6th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2018, (pp. 330–335), 11–13 August 2018, Ontario, Canada. doi:10.1109/SEGE.2018.8499509.10.1109/SEGE.2018.8499509
  23. 23. Moshkin, I., & Sauhats, A. (2016). Solving district heating problems by using cooperative game theory methods. In EEEIC 2016 – International Conference on Environment and Electrical Engineering, (pp. 1–5), 6–9 June 2017, Florence, Italy. doi:10.1109/EEEIC.2016.7555462.10.1109/EEEIC.2016.7555462
  24. 24. Simons G., & Barsun, S. (2017). Combined Heat and Power Evaluation Protocol. Davis, California. Available at https://www.nrel.gov/docs/fy17osti/68579.pdf
  25. 25. Muche, T., Höge, C., Renner, O., & Pohl, R. (2016). Profitability of Participation in Control Reserve Market for Biomass-Fueled Combined Heat and Power Plants. Renewable Energy, 90, 62–76. doi:10.1016/j.renene.2015.12.051.10.1016/j.renene.2015.12.051
  26. 26. Lako, P., Koyama, M., & Nakada, S. (2015). Biomass for Heat and Power. Technology Brief, IEA-ETSAP and IRENA Technology Brief E05. Available at https://irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA-ETSAP_Tech_Brief_E05_Biomass-for-Heat-and-Power.pdf
  27. 27. Broka, Z., Kozadajevs, J., Sauhats, A., Finn, D. P., & Turner, W. J. N. (2016). Modelling residential heat demand supplied by a local smart electric thermal storage system. In 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2016, 13–14 October 2016, Riga & Cesis, Latvia. doi:10.1109/RTUCON.2016.7763128 .10.1109/RTUCON.2016.7763128
  28. 28. Sauhats, A., Kozadajevs, J., Dolgicers, A., Zalitis, I., & Boreiko, D. (2019). The impact of the district heating system thermal inertia on the CHPP operation mode. In 2019 IEEE 60th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2019, 7–9 October 2019, Riga, Latvia. doi:10.1109/RTUCON48111.2019.8982254.10.1109/RTUCON48111.2019.8982254
  29. 29. Lloyd S., & Shapley A., (1951). Value for n-person games. In H.W. Kuhn and A.W. Tucker (eds.), Contributions to the Theory of Games (vol. II). Annals of Mathematical Studies (v. 28), pp. 307–317. Princeton: Princeton University Press.
  30. 30. TechLine (n.d.) Fuel Value Calculator. Available at https://www.fpl.fs.fed.us/documnts/techline/fuel-value-calculator.pdf
  31. 31. Ivanova, P., Linkevics, O., & Sauhats, A. (2017). Mathematical description of combined cycle gas turbine power plants’ transient modes. In 17th IEEE International Conference on Environment and Electrical Engineering and 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, (pp. 61–66), 6–9 June 2017, Milan, Italy. doi:10.1109/EEEIC.2017.797740510.1109/EEEIC.2017.7977405
  32. 32. Kumar, A., Cameron, J. B., & Flynn, P. C. (2003). Biomass Power Cost and Optimum Plant Size in Western Canada. Biomass and Bioenergy, 24 (6), 445–464. doi:10.1016/S0961-9534(02)00149-6.10.1016/S0961-9534(02)00149-6
  33. 33. Oleksijs, R., & Olekshii, B. (2019). Combined heat and power plant electrical equipment incident rate and unavailability empirical expression. In the Advances in Information, Electronic and Electrical Engineering, AIEEE 2019 - Proceedings of the 7th IEEE Workshop, 15−16 November 2018, Liepaja, Latvia. doi:10.1109/AIEEE48629.2019.8976989.10.1109/AIEEE48629.2019.8976989
DOI: https://doi.org/10.2478/lpts-2021-0017 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 66 - 81
Published on: Jun 24, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 R. Oleksijs, A. Sauhats, B. Olekshii, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.