Have a personal or library account? Click to login
Optimization of Energy Extraction Using Definite Geometry Prisms in Airflow Cover

Optimization of Energy Extraction Using Definite Geometry Prisms in Airflow

By: I. Tipans,  J. Viba,  M. Irbe and  S. K. Vutukuru  
Open Access
|Mar 2021

References

  1. 1. Wei, G. (2005). A Fixed-Mesh Method for General Moving Objects in Fluid Flow. International Journal of Modern Physics B, 19 (28), 1719–1722.10.1142/S021798490501030X
  2. 2. Wick, T. (2011). Fluid-Structure Interactions Using Different Mesh Motion Techniques. Journal of Computers and Structures, 89 (13), 1456–1467.10.1016/j.compstruc.2011.02.019
  3. 3. Codina, R., Houzeaux, G., Coppola-Owen, H., & Baiges, J. (2009). The Fixed-Mesh ALE Approach for the Numerical Approximation of Flows in Moving Domains. Journal of Computational Physics, 228 (5), 1591–1611.10.1016/j.jcp.2008.11.004
  4. 4. Tezduyar, T. E., Sathe, S., Keedy, R., & Stein, K. (2006). Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions. Comput. Methods Appl. Mech. Eng., 195, 2002–2027.10.1016/j.cma.2004.09.014
  5. 5. Tezduyar, T. E., & Sathe, S. (2007). Modelling of Fluid-Structure Interaction with the Spacetime Finite Elements: Solution Techniques. Int. J. Numer. Meth. Fluids, 54, 855–900.10.1002/fld.1430
  6. 6. Han, D., Liu, G. R., & Abdallah, S. (2020). An Eulerian-Lagrangian-Lagrangian Method for 2D Fluid-Structure Interaction Problem with a Thin Flexible Structure Immersed in Fluids. Computers & Structures, 228, 106179.10.1016/j.compstruc.2019.106179
  7. 7. Takizawa, K, & Tezduyar, T. E. (2011). Multiscale Space-Time Fluid-Structure Interaction Techniques. Comput. Mech., 48, 247–267.10.1007/s00466-011-0571-z
  8. 8. Neumuller, M., & Steinbach, O. (2011). Refinement of Flexible Space-Time Finite Element Meshes and Discontinuous Galerkin Methods. Computing and Visualization in Science, 14, 189–205.10.1007/s00791-012-0174-z
  9. 9. Gerstenberger, A., & Wall, W. A. (2006). An Extended Finite Element Method Based Approach for Large Deformation Fluid-Structure Interaction. European Conference on Computational Fluid Dynamics. ECCOMAS CFD, Netherlands, TU Delf.
  10. 10. Behr, M. (2008). Simplex Space-Time Meshes in Finite Element Simulations. International Journal for Numerical Methods in Fluids, 57 (9), 1421–1434.10.1002/fld.1796
  11. 11. Danwitz, M. V., Karyofylli, V., Hoster, N., & Behr, M. (2019). Simplex Space-Time Meshes in Compressible Flow Simulations. International Journal for Numerical Methods in Fluids, 91 (1), 29–48.10.1002/fld.4743
  12. 12. Diosady, L.T., Murman, S.M., & Carton de Wiart, C. (2018). A higher order space time finite element method for moving body and fluid structure interaction problem. In 10th International Conference on Computational Fluid Dynamics (ICCFD10) (pp. 1–16), 9–13 July 2018, Barcelona, Spain.
  13. 13. Tipans, I., Viba, J., Irbe, M., & Vutukuru, S. K. (2019). Analysis of Non-Stationary Flow Interaction with Simple Form Objects. Agronomy Research, 17 (1), 1227–1234.
  14. 14. Barrero-Gil, A., Pindado, S., & Avila, S. (2012). Extracting Energy from Vortex-Induced Vibrations. A Parametric Study. Applied Mathematical Modelling, 36 (7), 3153–3160.10.1016/j.apm.2011.09.085
  15. 15. Bearman, P.W. (1984). Vortex Shedding from Oscillating Bluff Bodies. Fluid Mech., 16, 195–222.10.1146/annurev.fl.16.010184.001211
  16. 16. Chin, D. D., & Lentink, D. (2016). Flapping Wing Aerodynamics: From Insects to Vertebrates. J. Exp. Biol., 219, 920–932.10.1242/jeb.04231727030773
DOI: https://doi.org/10.2478/lpts-2021-0009 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 19 - 31
Published on: Mar 30, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 I. Tipans, J. Viba, M. Irbe, S. K. Vutukuru, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.