Have a personal or library account? Click to login
Benefits of Energy Storage Systems for Small-Scale Wind Farm Development in Latvia Cover

Benefits of Energy Storage Systems for Small-Scale Wind Farm Development in Latvia

By: E. Groza,  M. Balodis,  K. Gulbis and  J. Dirba  
Open Access
|Mar 2021

References

  1. 1. Knapp, L., & Ladenburg, J. (2015). How Spatial Relationships Influence Economic Preferences for Wind Power. A review, 8, 6177–6201.10.3390/en8066177
  2. 2. Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C.N. (2015). Review of Energy Storage System for Wind Power Integration Support. Applied Energy, 137, 545–553.10.1016/j.apenergy.2014.04.103
  3. 3. Rosaria, M., Nucci, D., Will, A., & Krug, M. (2020). Deliverable 3.6. Catalogue of Potential Solutions to Overcome Acceptance Barriers for Each Country.
  4. 4. Ministru kabinets. (2013). Ministru kabineta noteikumi Nr. 240. Vispārīgie teritorijas plānošanas, izmantošanas un apbūves noteikumi. Latvijas vēstnesis, 21 (5), 41.
  5. 5. Windustry. (2008). Community Wind Toolbox. Minnesota.
  6. 6. Bañuelos-Ruedas, F., Ángeles Camacho, C., & Rios-Marcuello, S. (2011). Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region. In Gastón O. Suvire (ed.), Wind Farm - Technical Regulations, Potential Estimation and Siting Assessment. IntechOpen.10.5772/20669
  7. 7. European Wind Energy Association. (2012). Wind energy - The facts: A guide to the technology, economics and future of wind power. London: Earthscan.10.4324/9781849773782
  8. 8. IEEE. (2018). Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces.
  9. 9. Knipšis, A. (2012). Elektrisko pārvades tīklu elektroietaišu ekspluatācija. Rīga.
  10. 10. Holttinen, H., Miettinen, J. & Sillanpää, S. (2013). Wind power forecasting accuracy and uncertainty in Finland. Espoo: VTT Technical Research Centre of Finland.
  11. 11. Awasthi, A., Karthikeyan, V., Das, V., Rajasekar, S., & Singh, A. K. (2017). Energy Storage Systems in Solar-Wind Hybrid Renewable Systems. Green Energy and Technology, 189–222.10.1007/978-3-319-50197-0_7
  12. 12. Ackermann, T. (ed.) (2012). Wind power in power systems (2nd ed.). England: John Wiley & Sons, Ltd.10.1002/9781119941842
  13. 13. Wizelius, T. (2012). Design and Implementation of a Wind Power Project. Comprehensive Renewable Energy, 391–430.10.1016/B978-0-08-087872-0.00215-8
  14. 14. Korchinski, W. (2012). The limits of wind power. Los Angeles: Reason Foundation.
  15. 15. Swierczynski, M., Teodorescu, R., Rasmussen, C. N., Rodriguez, P., & Vikelgaard, H. (2010). Overview of the energy storage systems for wind power integration enhancement. In IEEE International Symposium on Industrial Electronics, 4–7 July 2010, Bari, Italy.10.1109/ISIE.2010.5638061
  16. 16. Metlovs, S. (2013). Vēja elektrostaciju, kā arī citu atjaunīgo energoresursu izmantojošo elektrostaciju jaudas regulēšanas iespēju izpēte. Rīga: RTU.
DOI: https://doi.org/10.2478/lpts-2021-0008 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 11 - 18
Published on: Mar 30, 2021
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 E. Groza, M. Balodis, K. Gulbis, J. Dirba, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.