Have a personal or library account? Click to login
Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence Cover

Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence

Open Access
|Jan 2021

References

  1. 1. Kaulachs, I., Ivanova, A., Holsts, M., Roze, A., Flerov, A., Tokmakov, A., Mihailovs, I., & Rutkis, M. (2020). Perovskite CH3NH3PbI3–xClx Solar Cells And Their Degradation (Part 1: A Short Review). Latv. J. Phys. Tech. Sci. 2021, 1, 44-52. DOI: 10.2478/lpts-2021-0005.10.2478/lpts-2021-0005
  2. 2. Ivanova, A., Tokmakov, A., Lebedeva, K. Roze, M., & Kaulachs, I. (2017). Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3–xClx Solar Cell Performance and Hysteresis. Latv. J. Phys. Tech. Sci., 54, 58–68. DOI: 10.1515/lpts-2017-0027.10.1515/lpts-2017-0027
  3. 3. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … & Huang, J. (2014). Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci., 7, 2619–2623. DOI: 10.1039/C4EE01138D.10.1039/C4EE01138D
  4. 4. Seo, Y.-H., Kim, E.-C., Cho, S.-P., Kim, S.-S., & Na, S.-I. (2017). High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance. Appl. Mater. Today, 9, 598–604. DOI: 10.1016/j. apmt.2017.11.003.10.1016/j.apmt.2017.11.003
  5. 5. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun., 5, 5784. DOI: 10.1038/ncomms6784.10.1038/ncomms678425503258
  6. 6. Lopez-Varo, P., Jiménez-Tejada, J.A., García-Rosell, M., Ravishankar, S., Garcia-Belmonte, G., Bisquert, J., & Almora, O. (2018). Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Adv. Energy Mater., 8, 1702772. DOI: 10.1002/aenm.201702772.10.1002/aenm.201702772
  7. 7. Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., & Huang, J. (2014). Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process. Energy Environ. Sci., 7, 2359–2365. DOI: 10.1039/C4EE00233D.10.1039/C4EE00233D
  8. 8. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., … & Ivanova, A. (2012). Electrodes for GaOHPc:PCBM/P3HT:PCBM Bulk Heterojunction Solar Cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.10.1016/j.chemphys.2012.06.007
  9. 9. Kaulachs, I., & Silinsh, E. (1994). Molecular Triplet Exciton Generation via Optical Charge Transfer States in Α-Metalfree Phthalocyanine, Studied by Magnetic Field Effects. Latv. J. Phys. Tech. Sci., 5, 12–22.
  10. 10. Shahbazi, M., & Wang, H. (2016). Progress in Research on the Stability of Organometal Perovskite Solar Cells, Sol. Energy., 123, 74–87. DOI: 10.1016/j.solener.2015.11.008.10.1016/j.solener.2015.11.008
  11. 11. Song, Z., Abate, A., Watthage, S.C., Liyanage, G.K., Phillips, A.B., Steiner, U., … & Heben, M.J. (2016). Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Adv. Energy Mater., 6, 1600846. DOI: 10.1002/aenm.201600846.10.1002/aenm.201600846
  12. 12. Wang, Q., Chen, B., Liu, Y., Deng, Y., Bai, Y., Dong, Q., & Huang, J. (2017). Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy Environ. Sci., 10, 516–522. DOI: 10.1039/C6EE02941H.10.1039/C6EE02941H
  13. 13. Wang, D., Wright, M., Elumalai, N.K., & Uddin, A. (2016). Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells, 147, 255–275. DOI: 10.1016/j. solmat.2015.12.025.10.1016/j.solmat.2015.12.025
  14. 14. Zhou, W., Zhao, Y., Shi, C., Huang, H., Wei, J., Fu, R., ... & Zhao, Q. (2016). Reversible Healing Effect of Water Molecules on Fully Crystallized Metal–Halide Perovskite Film. J. Phys. Chem. C., 120, 4759–4765. DOI: 10.1021/acs.jpcc.5b11465.10.1021/acs.jpcc.5b11465
  15. 15. Eperon, G.E., Habisreutinger, S.N., Leijtens, T., Bruijnaers, B.J., van Franeker, J.J., DeQuilettes, D.W., … & Snaith, H.J. (2015). The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano., 9, 9380–9393. DOI: 10.1021/acsnano.5b03626.10.1021/acsnano.5b0362626247197
  16. 16. Zhao, D., Sexton, M., Park, H.-Y., Baure, G., Nino, J.C., & So, F. (2015). High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater., 5, 1401855. DOI: 10.1002/aenm.201401855.10.1002/aenm.201401855
  17. 17. Shi, Z., & Jayatissa, A. (2018). Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials (Basel), 11, 729. DOI: 10.3390/ma11050729.10.3390/ma11050729597810629734667
  18. 18. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., & Huang, J. (2014). Qualifying Composition Dependent p and n Self-Doping in CH3NH3PbI3. Appl. Phys. Lett., 105, 163508. DOI: 10.1063/1.4899051.10.1063/1.4899051
  19. 19. Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., … & Yang, Y. (2014). Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett., 14, 4158–4163. DOI: 10.1021/nl501838y.10.1021/nl501838y24960309
  20. 20. Yang, Y., Ostrowski, D.P., France, R.M., Zhu, K., van de Lagemaat, J., Luther, J.M., & Beard, M.C. (2016). Observation of a Hot-Phonon Bottleneck in Lead-Iodide Perovskites. Nat. Photonics, 10, 53–59. DOI: 10.1038/nphoton.2015.213.10.1038/nphoton.2015.213
  21. 21. Niesner, D., Zhu, H., Miyata, K., Joshi, P.P., Evans, T.J.S., Kudisch, B.J., … & Zhu, X.-Y. (2016). Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films. J. Am. Chem. Soc., 138, 15717–15726. DOI: 10.1021/jacs.6b08880.10.1021/jacs.6b0888027934024
  22. 22. Yang, J., Wen, X., Xia, H., Sheng, R., Ma, Q., Kim, J., … & Conibeer, G. (2017). Acoustic-Optical Phonon Up-Conversion and Hot-Phonon Bottleneck in Lead-Halide Perovskites. Nat. Commun., 8, 14120. DOI: 10.1038/ncomms14120.10.1038/ncomms14120526388528106061
  23. 23. Zhu, H., Miyata, K., Fu, Y., Wang, J., Joshi, P.P., Niesner, D., ... & Zhu, X.-Y. (2016). Screening in Crystalline Liquids Protects Energetic Carriers in Hybrid Perovskites. Science, 353, 1409–1413. DOI: 10.1126/science.aaf9570.10.1126/science.aaf957027708033
  24. 24. Bretschneider, S.A., Laquai, F., & Bonn, M. (2017). Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films. J. Phys. Chem. C., 121, 11201–11206. DOI: 10.1021/acs.jpcc.7b03992.10.1021/acs.jpcc.7b03992
  25. 25. Guo, Z., Wan, Y., Yang, M., Snaider, J., Zhu, K., & Huang, L. (2017). Long-Range Hot-Carrier Transport in Hybrid Perovskites Visualized by Ultrafast Microscopy. Science, 356, 59–62. DOI: 10.1126/science. aam7744.10.1126/science
  26. 26. Frost, J.M., Whalley, L.D., & Walsh, A. (2017). Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. ACS Energy Lett., 2, 2647–2652. DOI: 10.1021/acsenergylett.7b00862.10.1021/acsenergylett.7b00862572746829250603
DOI: https://doi.org/10.2478/lpts-2021-0006 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 53 - 69
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 I. Kaulachs, A. Ivanova, A. Holsts, M. Roze, A. Flerov, A. Tokmakov, I. Mihailovs, M. Rutkis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.