Have a personal or library account? Click to login
Gallium Concentration Optimisation of Gallium Doped Zinc Oxide for Improvement of Optical Properties Cover

Gallium Concentration Optimisation of Gallium Doped Zinc Oxide for Improvement of Optical Properties

Open Access
|Jan 2021

References

  1. 1. Janotti, A., & van de Walle, C. G. (2009). Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72 (12). https://doi.org/10.1088/0034-4885/72/12/12650110.1088/0034-4885/72/12/126501
  2. 2. Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc Oxide Particles: Synthesis, Properties and Applications. Chemical Engineering Journal, 185–186, 1–22. https://doi.org/10.1016/j.cej.2012.01.07610.1016/j.cej.2012.01.076
  3. 3. Mondal, P. (2019). Effect of Oxygen Vacancy Induced Defect on the Optical Emission and Excitonic Lifetime of Intrinsic ZnO. Optical Materials, 98 (August), 109476. https://doi.org/10.1016/j.optmat.2019.10947610.1016/j.optmat.2019.109476
  4. 4. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A. … & Morkoç, H. (2005). A comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98 (4), 1–103. https://doi.org/10.1063/1.199266610.1063/1.1992666
  5. 5. Procházková, L., Gbur, T., Čuba, V., Jarý, V., & Nikl, M. (2015). Fabrication of Highly Efficient ZnO Nanoscintillators. Optical Materials, 47, 67–71. https://doi.org/10.1016/j.optmat.2015.07.00110.1016/j.optmat.2015.07.001
  6. 6. Wang, Z., Nayak, P. K., Caraveo-Frescas, J. A., & Alshareef, H. N. (2016). Recent Developments in p-Type Oxide Semiconductor Materials and Devices. Advanced Materials, 28 (20), 3831–3892. https://doi.org/10.1002/adma.20150308010.1002/adma.201503080
  7. 7. Angub, M. C. M., Vergara, C. J. T., Husay, H. A. F., Salvador, A. A., Empizo, M. J. F. … & Somintac, A. S. (2018). Hydrothermal Growth of Vertically Aligned ZnO Nanorods as Potential Scintillator Materials for Radiation Detectors. Journal of Luminescence, 203, 427–435. https://doi.org/10.1016/j.jlumin.2018.05.06210.1016/j.jlumin.2018.05.062
  8. 8. Sato, E., Sugimura, S., Endo, H., Oda, Y., Abudurexiti, A. … & Onagawa, J. (2012). 15Mcps Photon-Counting X-ray Computed Tomography System Using a ZnO-MPPC Detector and its Application to Gadolinium Imaging. Applied Radiation and Isotopes, 70 (1), 336–340. https://doi.org/10.1016/j.apradiso.2011.07.00210.1016/j.apradiso.2011.07.002
  9. 9. Sato, E., Matsukiyo, H., Osawa, A., Enomoto, T., Watanabe, M. … & Sato, S. (2008). X-ray Computed Tomography System Using a Multipixel Photon Counter. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, 7079(2008), 70790H. https://doi.org/10.1117/12.79543410.1117/12.795434
  10. 10. Derenzo, S. E., Weber, M. J., Bourret-Courchesne, E., & Klintenberg, M. K. (2003). The Quest for the Ideal Inorganic Scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505 (1–2), 111–117. https://doi.org/10.1016/S0168-9002(03)01031-310.1016/S0168-9002(03)01031-3
  11. 11. Grigorjeva, L., Millers, D., Smits, K., Grabis, J., Fidelus, J. … & Bienkowski, K. (2010). The Luminescence of ZnO Ceramics. Radiation Measurements, 45 (3–6), 441–443. https://doi.org/10.1016/j.radmeas.2010.03.01210.1016/j.radmeas.2010.03.012
  12. 12. Li, Q., Liu, X., Gu, M., Huang, S., Zhang, J. … & Zhao, S. (2016). X-ray Excited Luminescence of Ga- and In-doped ZnO Microrods by Annealing Treatment. Superlattices and Microstructures, 98, 351–358. https://doi.org/10.1016/j.spmi.2016.09.00510.1016/j.spmi.2016.09.005
  13. 13. Kano, M., Wakamiya, A., Sakai, K., Yamanoi, K., Cadatal-Raduban, M. … & Fukuda, T. (2011). Response-Time-Improved ZnO Scintillator by Impurity Doping. Journal of Crystal Growth, 318 (1), 788–790. https://doi.org/10.1016/j.jcrysgro.2010.10.19210.1016/j.jcrysgro.2010.10.192
  14. 14. Demidenko, V. A., Gorokhova, E. I., Khodyuk, I. v., Khristich, O. A., Mikhrin, S. B., & Rodnyi, P. A. (2007). Scintillation Properties of Ceramics Based on Zinc Oxide. Radiation Measurements, 42 (4–5), 549–552. https://doi.org/10.1016/j.radmeas.2007.01.05010.1016/j.radmeas.2007.01.050
  15. 15. al Abdullah, K., Awad, S., Zaraket, J., & Salame, C. (2017). Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying their Structural and Electrical Properties at Different Temperature. Energy Procedia, 119, 565–570. https://doi.org/10.1016/j.egypro.2017.07.08010.1016/j.egypro.2017.07.080
  16. 16. Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO Nanostructures by Chemical Precipitation Method. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 41 (7), 814–819. https://doi.org/10.1080/15533174.2011.59130810.1080/15533174.2011.591308
  17. 17. Ghoshal, T., Biswas, S., Paul, M., & De, S. K. (2009). Synthesis of ZnO Nanoparticles by Solvothermal Method and their Ammonia Sensing Properties. Journal of Nanoscience and Nanotechnology, 9 (10), 5973–5980. https://doi.org/10.1166/jnn.2009.129010.1166/jnn.2009.129019908483
  18. 18. Thamima, M., & Karuppuchamy, S. (2015). Microwave Assisted Synthesis of Zinc Oxide Nanoparticles. International Journal of ChemTech Research, 8 (11), 250–256. https://doi.org/10.1016/j.mspro.2015.11.10110.1016/j.mspro.2015.11.101
  19. 19. Jayathilake, D. S. Y., Peiris, T. A. N., Sagu, J. S., Potter, D. B., Wijayantha, K. G. U. … & Southee, D. J. (2017). Microwave-Assisted Synthesis and Processing of Al-Doped, Ga-Doped, and Al, Ga Codoped ZnO for the Pursuit of Optimal Conductivity for Transparent Conducting Film Fabrication. ACS Sustainable Chemistry and Engineering, 5 (6), 4820–4829. https://doi.org/10.1021/acssuschemeng.7b0026310.1021/acssuschemeng.7b00263
  20. 20. Makino, T., Segawa, Y., Yoshida, S., Tsukazaki, A., Ohtomo, A., & Kawasaki, M. (2004). Gallium Concentration Dependence of Room-Temperature Near-Band-Edge Luminescence in n-Type ZnO:Ga. Applied Physics Letters, 85 (5), 759–761. https://doi.org/10.1063/1.177663010.1063/1.1776630
  21. 21. Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D. … & Rodina, A. V. (2004). Bound Exciton and Donor-Acceptor Pair Recombinations in ZnO. Physica Status Solidi (B) Basic Research, 241 (2), 231–260. https://doi.org/10.1002/pssb.20030196210.1002/pssb.200301962
  22. 22. Kotomin, E. A., & Doktorov, A. B. (1982). Theory of Tunneling Recombination of Defects Stimulated by their Motion II. Three Recombination Mechanisms. Physica Status Solidi (B), 114 (2), 287–318. https://doi.org/10.1002/pssb.222114020210.1002/pssb.2221140202
  23. 23. Kim, J., Naik, G. V., Gavrilenko, A. V., Dondapati, K., Gavrilenko, V. I. … & Boltasseva, A. (2014). Optical Properties of Gallium-Doped Zinc Oxide – A Low-Loss Plasmonic Material: First-Principles Theory and Experiment. Physical Review X, 3 (4), 1–9. https://doi.org/10.1103/PhysRevX.3.04110.1103/PhysRevX.3.041037
DOI: https://doi.org/10.2478/lpts-2021-0004 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 33 - 43
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 A. Spustaka, M. Senko, D. Millers, I. Bite, K. Smits, V. Vitola, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.