Have a personal or library account? Click to login
Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics Cover

Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics

Open Access
|Jan 2021

References

  1. 1. Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, S. … & Morkoc, H. (2005). A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98, 04301l.
  2. 2. Yan, T., Trinkler, L., Korsaks, V., Lu, C. Y., Berzina, B. ... & Ploog, K. H. (2020). Anisotropic Photoluminescence of Nonpolar ZnO Epilayers and ZnO/Zn1−xMgxO Multip-le Quantum Wells Grown on LiGaO2 Substrate. Optic Express, 28 (4), 5629–5638.10.1364/OE.385828
  3. 3. Grigorjeva, L., Miller, D., Grabis, J., Monty, C., Kalinko, A. .... & Lojkowski, W. (2008). Luminiscence Properties of ZnO Nanocrystals and Ceramics. IEEE Transactions on Nuclear Science, 55, 1551–1555.10.1109/TNS.2008.921931
  4. 4. Rodnyi, P. A., Chernenko, K. A., Gorokhova, E. I., Kozlovskii, S. S., Khanin, V. M., & Khodyuk, I.V. (2012). Novel Scintillation Material – ZnO Transparent Ceramics. IEEE Transactions on Nuclear Science, 59 (5), 2152–2155.10.1109/TNS.2012.2189896
  5. 5. Wilkinson, J., Ucer, K. B., & Williams, R. T. (2005). The Oscillator Strength of Extended Exciton States and Possibility for Very Fast Scintillators. Nuclear Instruments and Methods in Physics Research, A., 537, 66–70.10.1016/j.nima.2004.07.236
  6. 6. Makino, T., Segawa, Y., Yoshida, S., Tsukazaki, A., Ohtomo, A., & Kawasaki, M. (2004). Gallium Concentration Dependence Of Room Temperature Near-Band-Edge Luminescence in n-Type ZnO:Ga. Applied Physics Letters, 85 (5), 759–761.10.1063/1.1776630
  7. 7. Kano, M., Wakamiya, A., Sakai, K., Yamanoi, K., Cadatal-Raduban, M. … & Fukuda, T. (2011). Response-Time-Improved ZnO Scintillator by Impurity Doping. Journal of Crystal Growth, 318 (1), 788–790.10.1016/j.jcrysgro.2010.10.192
  8. 8. Muktepavela, F., Maniks, J., Grigorjeva, L., Zabels, R., Rodnyi, P., & Gorokhova, E. (2018). Effect of In Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as Material for Scintillators. Latvian Journal of Physics and Technical Sciences, 55 (6), 35–42.10.2478/lpts-2018-0042
  9. 9. Chernenko, K. A., Gorokhova, I., Erońko, S. B., Sandulenko, A., Venevtsev, I. D. ...& Rodnyi, P. (2018). Structural, Optical and Luminescent Properties of ZnO:Ga and ZnO:In Ceramics. IEEE Transactions on Nuclear Science, 65 (8), 2196–2202.10.1109/TNS.2018.2810331
  10. 10. McLean, D. (1977). Mechanical properties of metals. Krieger Publishing Company.
  11. 11. Fisher-Cripps, A.C. (2002). Nanoindentation. NY. Springer.10.1007/978-0-387-22462-6
  12. 12. Gouldstone, A., Koh, H. J., Zeng, K. Y, Giannakopoulos, A. E., & Suresh, S. (2000). Discrete and Continuous Deformation during Nanoindentation of Thin Films. Acta Materialia, 48 (9) 2277–2295.10.1016/S1359-6454(00)00009-4
  13. 13. Ivor, M., Medved, D., Vojtko, M., Naughton-Duszova, A., Marciniak, L., & Dusza, J. (2020). Nanoindentation and Tribology of ZrB2 Based Luminescent Ceramic. Journal of European Ceramics Society, 40 (14) 4901–4908.10.1016/j.jeurceramsoc.2020.03.021
  14. 14. Zabels, R., Muktepavela, F., Grigorjeva, L., Tamanis, E., & Mishels-Piesins, M. (2010). Nanoindentation and Photoluminescence Characterization of ZnO Thin Films and Single Crystals. Journal of Optical Materials, 32 (8), 818–822.10.1016/j.optmat.2010.02.002
  15. 15. Muktepavela, F., Bakradze G., & Sursaeva, V. (2008). Micromechanical Properties of Grain Boundaries and Triple Junctions in Polycrystalline Metals Exhibiting Grain Boundary Sliding at 293K. Journal of Materials Science, 43 (11) 3848–3854.
  16. 16. Pearton, S. J., Yang, J., Cary, P. H. IV., Ren, F., Kim, J. … & Mastro, M., A. (2018). A Review of Ga2O3 Materials, Processing, and Devices. Applied Physics Review, 5 (1), 011301.10.1063/1.5006941
  17. 17. Gong, J., Wang, J., & Guyan, Z. (2002). Indentation Toughness of Ceramics: A Modified Approach. Journal of Materials Science, 37, 865–869.10.1023/A:1013816604106
  18. 18. Yonenaga, I. (2005). Hardness, Yield Strength and Dislocation Velocity in Elemental and Compound Semiconductors. Materials Transaction, 46 (9), 1979–1985.10.2320/matertrans.46.1979
  19. 19. Milman,Yu. V., Galanov, B. A., & Chugunova, S. I. (1993). Plasticity Characteristics Obtained through Hardness Measurement. Acta Metallurgica et Materialia, 41 (9), 2523–2532.10.1016/0956-7151(93)90122-9
  20. 20. Nahm, C. W., & Park, C. H. (2000). Microstructure, Electrical Properties, and Degradation Behavior of Praseodymium Oxides-Based Zinc Oxide Varistors Doped with Y2O3. Journal of Materials Science, 35 (12), 3037–3042.10.1023/A:1004749214640
  21. 21. Muktepavela, F., & Maniks, J. (2003). Interface Diffusion Controlled Sintering of Atomically Clean Surfaces of Metals. Defects and Diffusion Forum, 216–217, 169–174.10.4028/www.scientific.net/DDF.216-217.169
  22. 22. Kelly, J.P., & Graeve, O. A. (2012). Effect of Powder Characteristics on Nanosintering Mechanisms of Convention Nanodensification and Field Assisted Processes. Sintering. Springer, Berlin, Heidelberg, 57–95.
  23. 23. Vorobyeva, N. A., Rumyanceva, M. N., Forsh, P. A., & Gaskov, A. M. (2013). Conductivity of Nanocrystalline ZnO(Ga). Semiconductors, 47 (5), 650–564.10.1134/S1063782613050242
  24. 24. Ewsuk, K. G., Ellerby, D.T., & DiAntonio, C., B. (2006). Analysis of Nanocrystalline and Microcrystalline ZnO Sintering Using Master Sintering Curves. Journal of American Ceramics Society, 89 (6), 2003–2009.10.1111/j.1551-2916.2006.00990.x
  25. 25. Huang, G. Y., Wang, C. Y., & Wang, J .T. (2009). Vacancy-Assisted Diffusion Mechanism of Group-III Elements in ZnO: An Ab Initio Study. Journal of Applied Physics, 105 (7), 073504.10.1063/1.3103307
DOI: https://doi.org/10.2478/lpts-2021-0003 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 23 - 32
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 F. Muktepavela, A. Zolotarjovs, R. Zabels, K. Kundzins, E. Gorokhova, E. Tamanis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.