Have a personal or library account? Click to login
The Selection of Boron Nitride Circles for Grinding Saponite–Titanium Composites Using Non-Parametric Method Cover

The Selection of Boron Nitride Circles for Grinding Saponite–Titanium Composites Using Non-Parametric Method

Open Access
|Dec 2020

References

  1. 1. Guliieva, N. M. (2015). Getting Porous Penetrating Materials Using Natural Mineral – Saponite in Self-Propagating High-Temperature Synthesis. – Manuscript. Dissertation for the degree of Ph.D., specialty 05.02.01 – Materials science. Lutsk National Technical University, 134.
  2. 2. Rud’, V. D., Samchuk, L. M., & Gulieva, N. M. (2013). Using SHS process to obtain composite materials. Powder Metallurgy: Surface Engineering, New Powder Composite Materials. Welding: Collection Doc, 496–500.
  3. 3. Gulieva, N. M. (2014). Khimichnyi analiz ta fizychni vlastyvosti pryrodnogo material – saponitu. Mizhvu zivskyi zbirnyk “Naukovi notatky”, 44, 78–82.
  4. 4. Kar, S., Kumar, A S., Bandyopadhyay, P. P., & Paul, S. (2020). Grindability of Plasma Sprayed Thermal Barrier Coating Using Super Abrasive Wheel. Transactions of the Institute of Metal Finishing, 98 (1), 30–36. DOI: 10.1080/00202967.2020.1697572.
  5. 5. Cao, J., Wu, Y., Li, J., & Zhang, Q. (2015). A Grinding Force Model for Ultrasonic Assisted Internal Grinding (UAIG) of SiC Ceramics. Adv. Manuf. Technol., 81 (5–8), 875–885. DOI: 10.1007/s00170-015-7282-0.
  6. 6. El Wakil, S. D., & Srinagesh, K. (2008). Effect of the physical and mechanical properties of composites on their grinding characteristics. In Conf. HPSM 2008. April 2008 (pp. 149–155). WIT Transactions on the Built Environment 97: Grinding of polymeric composites. DOI: 10.2495/HPSM080161.
  7. 7. Bianchi, E. C., Rodriguez, R. L., Hildebrandt, R. A., Lopes, J. C., de Mello, H. J., da Silva, R. B., & de Aguiar, P. R. (2018). Plunge Cylindrical Grinding with the Minimum Quantity Lubrication Coolant Technique Assisted with Wheel Cleaning System. Manuf Technol, 95, 2907–2916. DOI: 10.1007/s00170-017-1396-5.
  8. 8. Wang, H., Ning, F., Hu, Yi., Fernando, P. K. S. C., Pei, Z. J., & Cong, W. (2002). Surface Grinding of Carbon Fiber – Reinforced Plastic Composites Using Rotary Ultrasonic Machining: Effects of Tool Variables. Advances in Mechanical Engineering, 8 (9). DOI: 10.1177/1687814016670284.
  9. 9. Irani, R. A., Bauer, R. J., & Warkentin, A. (2005). A Review of Cutting Fluid Application in the Grinding Process. Int J Mach Tools Manuf, 45 (15), 1696–1705. DOI: 10.1016/j.ijmachtools.2005.03.006.
  10. 10. Miyakawa, O., Watanabe, K., Okawa, S., Nakano, S., Shiokawa, N., Kobayashi, M., & Tamura, H. (1990). Grinding of Titanium. 1. Commercial and Experimental Wheels Made of Silicon Carbide Abrasives. Shika Zairyo Kikai, 9 (1), 30–41. PMID: 2134811.
  11. 11. Jha, A., & Paul, S. (2019).Surface Integrity in Grinding of Ti-6Al-4V Using Monolayer Superabrasive Wheel. Advances in Materials and Processing Technologies, 5 (2), 213–225. DOI: 10.1080/2374068X.2018.1564866.
  12. 12. Das, P., Bandyopadhyay, P. P., & Paul., S. (2019). Finish Form Grinding of Thermally Sprayed Nano-Structured Coatings. Advances in Materials and Processing Technologies, 5 (1), 39–52. DOI: 10.1080/2374068X.2018.1510680
  13. 13. Paul, S, Singh, A. K., & Ghosh, A. (2017). Grinding of Ti-6Al-4V under Small Quantity Cooling Lubrication Environment Using Alumina and MWCNT Nanofluids. Materials and Manufacturing Processes, 32 (6), 608–6015. DOI: 10.1080/10426914.2016.1257797
  14. 14. Li, H. N. (2016). Textured Grinding Wheels: A Review. International Journal of Machine Tools and Manufacture, 109, 8–35. DOI: 10.1016/j.ijmachtools.2016.07.001
  15. 15. Kacalak, W., Lipiński, D., Bałasz, B., Rypina, Ł., Tandecka, K., & Szafraniec, F. (2018). Performance Evaluation of the Grinding Wheel with Aggregates of Grains in Grinding of Ti-6Al-4V Titanium Alloy. Advanced Manufacturing Technology, 94 (1–4), 301–314. DOI: 10.1007/s00170-017-0905-x
  16. 16. Kosmac, T., Oblak, C., Jevnikar, P., Funduk, N., & Marion, L. (1999). The Effect of Surface Grinding and Sandblasting on Flexural Strength and Reliability of Y-TZP Zirconia Ceramic. Dental Materials, 15 (6), 426–433. DOI: 10.1016/s0109-5641(99)00070-6
  17. 17. LópezdeLacalle, L. N., Rodríguez, A., Lamikiz, A., Celaya, A., & Alberdi, R. (2011). Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness. Materials and Manufacturing Processes, 26 (8), 997–1003. DOI: 10.1080/10426914.2010.529589.
  18. 18. Niharika, Agrawal, B.P., Khan, I.A., & Khan, Z.A. (2016). Effects of Cutting Parameters on Quality of Surface Produced by Machining of Titanium Alloy and Their Optimization. CC BY 4.0, 63, 531–548. DOI: 10.1515/meceng-2016-0030.
  19. 19. Soler, Ya. I., & Mai, D. S. (2015). Select of Abrasive Wheels while Pendular Grinding of Parts from Titanium Alloy VT22 by High Roughness Parameters. Equipment. Tools, 4 (69), 18–33. DOI: 10.17212/1994-6309-2015-4-18-30
  20. 20. Catalog (2020). Metal cutting machines. Catalog of metal-cutting machines and forging equipment. Rubicon LLC. Available at http://stanki-katalog.ru/sprav.htm
  21. 21. ISO (2002). ISO 1302:2002, Geometrical Product Specifications (GPS) – Indication of Surface Texture in Technical Product Documentation.
  22. 22. ISO (2013). ISO 6106:2013, Abrasive Products — Checking the Grain Size of Superabrasives.
  23. 23. ISO (2013). ISO 525:2013, Bonded Abrasive Products — General Requirements.
  24. 24. ISO (1996). ISO 8486-1:1996, Bonded Abrasives – Determination and Designation of Grain Size Distribution – Part 1. Macrogrits F4 to F220.
  25. 25. ISO (1987). ISO GOST 19300-86. Instruments for Measurement of Surface Roughness by the Profile Method. Contact Profilographs and Profilometers. Types and Main Parameters. Available at http://docs.cntd.ru/document/1200004988.
  26. 26. Jiang, J., Roussas, G. G., & Samaniego, F. J. (2011). Nonparametric Statistical Methods and Related Topics. World Scientific, 480. DOI: 10.1142/8258.
  27. 27. Statistica: Enterprise Capabilities, StatSoft, 22. Available at http://statsoft.ru/#tab-STATIS
  28. 28. Ali, Y. M., & Zhang, L. C. (2004). A Fuzzy Model for Predicting Burns in Surface Grinding of Steel. International Journal of Machine Tools and Manufacture, 44, 563–571.10.1016/j.ijmachtools.2003.10.030
  29. 29. Marinescu, I. D., Hitchiner, M. P., Uhlmann, E., Rowe, W. B., & Inasaki, I. (2006). Handbook of machining with grinding wheels. CRC Press. DOI: 10.1201/9781420017649.
  30. 30. Kikuchi, M. (2009). The Use of Cutting Temperature to Evaluate the Machinability of Titanium Alloys. Acta Biomaterialia, 5 (2), 770–775. DOI: 10.1016/j.actbio.2008.08.01618845491
  31. 31. Nik, M. G., Movahhedy, M. R., & Akbari, J. (2012). Ultrasonic-Assisted Grinding of Ti6Al4V Alloy. Procedia CIRP, 1, 353–358. DOI: 10.1016/j.procir.2012.04.063.
  32. 32. ISO (2019). DSTU ISO 603-3:2019. Communication Abrasives. Dimensions. Part 3. Internal grinding wheels. Amendment, 1.
DOI: https://doi.org/10.2478/lpts-2020-0033 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 53 - 64
Published on: Dec 16, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 N.M. Huliieva, D.O. Somov, V.V. Pasternak, L.M. Samchuk, T.I. Chetverzhuk, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.