Have a personal or library account? Click to login
The Development of the Smart Gas Distribution: General Trends and the Latvian Context Cover

The Development of the Smart Gas Distribution: General Trends and the Latvian Context

Open Access
|Dec 2020

References

  1. 1. International Gas Union. (2020). Global Gas Report 2020. [online]. [accessed 14 November 2020]. Available at https://ceenergynews.com/reports/igu-global-gas-report-2020/
  2. 2. Stern, J. (2017). The Future of Gas in Decarbonising European Energy Markets: The Need for a New Approach. OIES Paper: NG 116.10.26889/9781784670764
  3. 3. Eurostat. (2018). Natural gas supply statistics. [Online]. [Accessed: 8 October 2020]. Available at https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_supply_statistics&oldid=401136
  4. 4. Savickis, J., Zeltins, N. & Jansons, L. (2019). Synergy between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (problem statement): The Latvian Perspective. Latvian Journal of Physics and Technical Sciences, 56 (6), 17–32. DOI: 10.2478/lpts-2019-0032.
  5. 5. Savickis, J., Zeltins, N., Kalvītis, A., & Ščerbickis, I. (2018). Natural Gas Development Prospects in the World, Europe, in the Baltic and Latvia. Energy and World Special Edition (dedicated to the 4th World Latvian Scientists’ Congress, June 2018, Riga).
  6. 6. Verdolini, E., Vona, F., & Popp, D. (2018). Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion? Energy Policy, 116, 242–256.10.1016/j.enpol.2018.01.058
  7. 7. European Gas Hub. (2019). Lowest European gas prices in 10 years. [online]. [accessed 5 November 2020]. Available at https://www.europeangashub.com/lowest-european-gas-prices-in-10-years.html
  8. 8. Interactive CO2 pricing data hub Embler. [online]. [accessed 12 November 2020]. Available at https://ember-climate.org/data/carbon-price-viewer/
  9. 9. ECRB. (2019). Monitoring Report on the Functioning of Gas and Electricity Retail Markets in the Energy Community in 2018.
  10. 10. Eurostat. (n.d.). Gas prices by type of user. [online]. [accessed 3 November 2020]. Available at https://ec.europa.eu/eurostat/web/products-datasets/-/ten00118
  11. 11. Statista. (n.d.). Share of natural gas imported to the European Union (EU) from Russia from 2010 to 2018 (as percentage of total extra-EU natural gas imports). [online]. [accessed 22 November 2020]. Available at https://www.statista.com/statistics/1021735/share-russian-gas-imports-eu/
  12. 12. European Environment Agency. (2018). Air quality in Europe – 2018 Report. [online]. [accessed 1 November 2020]. Available at https://www.eea.europa.eu/publications/air-quality-in-europe-2018
  13. 13. International Energy Agency. (2019). The Role of gas in today’s energy transitions. World Energy Outlook special report. [online]. [accessed 4 October 2020]. Available at https://webstore.iea.org/login?ReturnUrl=%2fdownload%2fdirect%2f2819%3ffileName%3dTheRoleofGas.pdf&fileName=TheRoleofGas.pdf
  14. 14. PwC. (2015). Realizing the benefits of smart gas distribution. PwC series: The promise and potential of smart gas distribution. [online]. [accessed 20 November 2020]. Available at https://www.pwc.se/sv/energi/assets/realizing-the-benefits-of-smart-gas-distribution.pdf
  15. 15. Lund, H., Østergaard, P.A., Connolly, D., & Mathiesen, B.V. (2017). Smart Energy and Smart Energy Systems, Energy, 137, 556–565. DOI 10.1016/j.energy.2017.05.123
  16. 16. Savickis, J., Zemite, L., Zeltins, N., Bode, I., Jansons, L., Dzelzitis, E., … & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–51. DOI: 10.2478/lpts-2020-0020.
  17. 17. Smart Energy Networks. (2015). Vision for smart energy in Denmark: Research, development and demonstration. [online]. [accessed 14 November 2020]. Available at http://www.smartenergynetworks.dk/uploads/3/9/5/5/39555879/vision_for_smart_energy_in_denmark.pdf
  18. 18. Miller, W.J. (2017) Internet of Things (IoT) for smart energy systems. In Gabbar, H.A. (ed.) Smart Energy Grid Engineering. [online]. [accessed 2 November 2020]. Available at https://www.sciencedirect.com/science/article/pii/B978012805343000011510.1016/B978-0-12-805343-0.00011-5
  19. 19. Staffell, I., Scamman, D., Velazquez Abad A., Balcombe, P., Dodds, P., Ekins, P., … & Ward, K. (2018). The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy & Environmental Science, 12 (2): 463–491. DOI: 10.1039/C8EE01157E
  20. 20. Bouhafs, F., Mackay, M., & Merabti, M. (2014). Communication challenges and solutions in the smart grid. Springer10.1007/978-1-4939-2184-3
  21. 21. Sioshansi, F. (ed.). (2019). Consumer, prosumer, prosumager: How service innovations will disrupt the utility business model. Academic Press.
  22. 22. Smart Energy. (2015). IGU World Gas Congress 2015. Grid aspects related to Gas.
  23. 23. Sayed, K., & Gabbar, H.A. (2017). SCADA and smart energy grid control automation. In Gabbar, H. A. (ed.) Smart Energy Grid Engineering. 10.1016/B978-0-12-805343-0.00018-810.1016/B978-0-12-805343-0.00018-8
  24. 24. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). [online]. [accessed 20 October 2020]. Available at https://eur-lex.europa.eu/eli/reg/2016/679/oj
  25. 25. Fizisko personu datu apstrādes likums. (2018). [online]. [accessed 6 October 2020]. Available at https://likumi.lv/ta/id/300099-fizisko-personu-datu-apstrades-likums
  26. 26. ERRA. (2010). Regulatory aspects of smart metering. [online]. [accessed 5 November 2020]. Available at https://erranet.org/wpcontent/uploads/2016/03/KEMA_Issue_Paper_Smart_Metering_FINAL_eng.pdf
  27. 27. Geelen, D., van Kempen, G., van Hoogstraten, F., & Liotta A. (2012). A wireless mesh communication protocol for smart-metering. International Conference on Computing, Networking and Communications (ICNC), 30 January–2 February 2012, Maui, HI, USA. DOI: 10.1109/ICCNC.2012.6167440
  28. 28. Delta Energy and Environment. (2019). Smart meter benefits. Role of smart meters in responding to climate change. [online]. [accessed 9 November 2020]. Available at https://www.smartenergygb.org/en/resources/press-centre/press-releases-folder/delta-ee-carbon-savings
  29. 29. Toratti, J. (2020). Appraising the economics of smart meters: Costs and benefits. London: Routledge.10.4324/9780367203375
  30. 30. Savickis, J., Zemite, L., Bode, I., & Jansons. L. (2020). Natural Gas Metering and its Accuracy in the Smart Gas Supply Systems. Latvian Journal of Physics and Technical Sciences, 57 (5), 39–50. DOI: 10.2478/lpts-2020-0026.
  31. 31. Report from the Commission. Benchmarking Smart Metering Deployment in the EU-27 with a Focus on Electricity /* COM/2014/0356 final */ [online]. [accessed 1 November 2020]. Available at https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=COM%3A2014%3A356%3AFIN
  32. 32. Bianchini, A., Saccani, C., Guzzini, A., & Pellegrini, M. (2018). Gas smart metering in Italy: State of the art and analysis of potentials and technical issues. [online]. [accessed 10 November 2020]. Available at https://www.researchgate.net/publication/330260200_Gas_smart_metering_in_Italy_state_of_the_art_and_analysis_of_potentials_and_technical_issues
  33. 33. Zemite, L., Kutjuns, A., Bode, I., Kunickis, M., & Zeltins, N. (2018). Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia. Latvian Journal of Physics and Technical Sciences, 55 (1), 22–34. DOI: 10.2478/lpts-2018-0003.
  34. 34. Koposovs, A., Bode, I., Zemite, L., Dzelzitis, E., Odineca, T., Ansone, A., … & Jasevics, A. (2019). Optimization of the Selection Method for Reconstruction of Outworn Gas Distribution Pipeline. Latvian Journal of Physics and Technical Sciences, 56 (5), 33–44. DOI: 10.2478/lpts-2019-0029.
  35. 35. Stoltenkampa, P.W., Bergervoetb, J.T.M., Willemsa, J.F.H., van Uitterta, F.M.R., & Hirschberga, A. (2008). Response of Turbine Flow Meters to Acoustic Perturbations. Journal of Sound and Vibration, 258–278.10.1016/j.jsv.2008.01.051
  36. 36. Cascetta, F., & Rotondo, G. (2015). Effects of Intermittent Flows on Turbine Gas Meters Accuracy. Second University of Naples, Italy Measurement, 69, 280–286.10.1016/j.measurement.2015.02.008
  37. 37. Platais, I., & Graudiņš, P. (2008). Gāzapgāde. 1.daļa. Ogļūdenražu deggāzes, to īpašības, metroloģija un sadedzināšana. Rīga: RTU izdevniecība.
  38. 38. Homann, K., Reimert, R., & Bernhard, K. (2013). The gas engineer’s dictionary. Supply infrastructure from A to Z. Germany: DIV Deutscher Industrieverlag GmbH.
  39. 39. Energoefektivitātes likums. (2016). [online]. [accessed 11 August 2020]. Available at https://likumi.lv/doc.php?id=280932
  40. 40. Hodge, M., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22 (2), 85–126.10.1023/B:AIRE.0000045502.10941.a9
  41. 41. Outlook for biogas and prospects for organic growth. (2020). [Online]. [Accessed: 6 October 2020]. Available at https://www.euneighbours.eu/sites/default/files/publications/202003/Outlook_for_biogas_and_biomethane.pdf
  42. 42. European Biogas Association. (n.d.). EBA’s biomethane fact sheet. [Online]. [Accessed: 22 November 2020]. Available at https://www.europeanbiogas.eu/wp-content/uploads/files/2013/10/eba_biomethane_factsheet.pdf
  43. 43. Green Gas Initiative. (2016). Gas and Gas Infrastructure – the Green Commitment. Recommendations for curbing climate change: Biomethane, power to gas and gas as fuel in transport [online]. [accessed 1 November 2020]. Available at https://www.greengasinitiative.eu/upload/contenu/greengas_initiative_report_web_2016_1.pdf
  44. 44. Ministru kabineta noteikumi Nr. 650. (prot. Nr. 50 5. §) “Prasības biometāna un gāzveida stāvoklī pārvērstas sašķidrinātās dabasgāzes ievadīšanai un transportēšanai dabasgāzes pārvades un sadales sistēmā”. [Online]. [Accessed: 20 October 2020]. Available at: https://likumi.lv/ta/id/285189-prasibas-biometana-un-gazveida-stavokli-parverstas-saskidrinatas-dabasgazes-ievadisanai-un-transportesanai-dabasgazes-parvades-...
  45. 45. GASO. [online]. [accessed 20 November 2020]. Available at https://www.gaso.lv/uznemuma-rasanas
  46. 46. Elektroenerģijas un dabasgāzes sadales pakalpojumu kvalitātes pārskats par 2019. gadu [online]. [accessed 1 November 2020]. Available at https://www.sprk.gov.lv/sites/default/files/editor/ED-Kvalitates-parskats_2019%20(3)_0_0.pdf
  47. 47. AS “Gaso”. (2018). Piecu gadu investīciju (attīstības) programma.
  48. 48. Bethers, J. (2020). Enerģētikas sektora izaicinājumi ceļā uz klimata neitralitāti 2030/2050. Conference presentation.
DOI: https://doi.org/10.2478/lpts-2020-0031 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 23 - 39
Published on: Dec 16, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 J. Savickis, L. Zemite, L. Jansons, I. Bode, E. Dzelzitis, A. Broks, L. Vempere, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.