Have a personal or library account? Click to login
Computer Simulation of the Electric Transport Properties of the FeSe Monolayer Cover

Computer Simulation of the Electric Transport Properties of the FeSe Monolayer

Open Access
|Dec 2020

References

  1. 1. Kyeremateng, N.A., Brousse, T., & Pech, D. (2017). Microsupercapacitors as Miniaturized Energy-Storage Components for On-Chip Electronics. Nature Nanotechnology, 12, 7–15. DOI: 10.1038/nnano.2016.19627819693
  2. 2. Kreisel, A., Hirschfeld, P.J., & Andersen, B.M. (2020). On the Remarkable Superconductivity of FeSe and its Close Cousins. Symmetry, 12 (9), 1402. DOI: 10.3390/sym12091402
  3. 3. Liu, C., & Zou, K. (2020). Tuning Stoichiometry and its Impact on Superconductivity of Monolayer and Multilayer FeSe on SrTiO3. Physical Review B, 101 (14), 140502. DOI: 10.1103/PhysRevB.101.140502
  4. 4. Chen, Y.H., Sun, Y., Ji, S.Y., Xiong, W., Pei, Z.C., & Wang, Z.W. (2020). Enhancement of Effective Masses of the Surface Polaron in FeSe Thin Film on SrTiO3 Substrate. Superlattices and Microstructures, 106573. DOI: 10.1016/j.spmi.2020.106573
  5. 5. Kozlovskiy, A., Zhanbotin, A., Zdorovets, M., Manakova, I., Ozernoy, A., Kadyrzhanov, K., & Rusakov, V. (2015). Study of Ni/Fe Nanotube Properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 365, 663–667. DOI: 10.1016/j.nimb.2015.09.090
  6. 6. Zdorovets, M.V., & Kozlovskiy, A.L. (2018). Argon Ion Irradiation Effect on Zn Nanotubes. Journal of Materials Science: Materials in Electronics, 29 (5), 3621–3630. DOI: 10.1007/s10854-017-8292-5
  7. 7. Zdorovets, M.V., & Kozlovskiy, A.L. (2019). Investigation of Phase Transformations and Corrosion Resistance in Co/CoCo2O4 Nanowires and their Potential Use as a Basis for Lithium-Ion Batteries. Scientific Reports, 9 (1), 1–12. DOI: 10.1038/s41598-019-53368-y685118731719638
  8. 8. Akilbekov, A., Akylbekova, A., Usseinov, A., Kozlovskyi, A., Baymukhanov, Z., Giniyatova, S., … & Dauletbekova, A. (2020). Ion Track Template Technique for Fabrication of ZnSe2O5 Nanocrystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 476, 10–13. DOI: 10.1016/j.nimb.2020.04.039
  9. 9. Chen, C., Liu, C., Liu, Y., & Wang, J. (2020). Bosonic Mode and Impurity-Scattering in Monolayer Fe(Te,Se) High-Temperature Superconductors. Nano Letters, 20 (3), 2056–2061. DOI: 10.1021/acs.nanolett.0c0002832045257
  10. 10. Isherwood, L.H., Worsley, R.E., Casiraghi, C., & Baidak, A. (2018). Alpha Particle Irradiation of Bulk and Exfoliated MoS2 and WS2 Membranes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 435, 180–189. DOI: 10.1016/j.nimb.2018.01.018
  11. 11. Qiao, M., Wang, T.J., Zhang, J., Liu, Y., Liu, P., & Wang, X.L. (2018). The Effect of Carbon-Ion Irradiation on Surface Microstructure and Photoluminescence Properties in Monolayer Tungsten Diselenide. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 435, 278–284. DOI: 10.1016/j.nimb.2018.01.003
  12. 12. Sergeyev, D.M. (2018). Computer Simulation of Electrical Characteristics of a Graphene Cluster with Stone-Wales Defects. Journal of Nano and Electronic Physics, 10 (3), 03018. DOI: 10.21272/jnep.10(3).03018
  13. 13. Dragoman, M.A., Dinescu, A., & Dragoman, D. (2019). 2D Materials Nanoelectronics: New Concepts, Fabrication, Characterization from Microwaves up to Optical Spectrum. Phys. Status Solidi A, 1800724. DOI: 10.1002/pssa.201800724
  14. 14. Illarionov, Yu. Yu., Knobloch, T., Jech, M., Lanza, M., Akinwande, D., Vexler, M.I., … & Grasser, T. (2020). Insulators for 2D Nanoelectronics: the Gap to Bridge. Nature Communications, 11, 3385. DOI: 10.1038/s41467-020-16640-8734185432636377
  15. 15. Sergeyev, D., & Zhanturina, N. (2019). Simulation of Electrical Characteristics of Switching Nanostructures “Pt-TiO-Pt” and “Pt-NiO-Pt” with Memory. Radioengineering, 28 (4), 714–720. DOI: 10.13164/re.2019.0714
  16. 16. Liu, N., Bo, G., Liu, Y., Xu, X., Du, Y., & Dou, Sh. (2019). Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 15 (32), 1805147. DOI: 10.1002/smll.20180514730756479
  17. 17. Huang, W.Q., Liu, Sh. R., Pen, H.Y., Li, X., & Huang, Z.M. (2020). Synthesis of New Silicene Structure and its Energy Band Properties. Chinese Physics B, 29, 084202. DOI: 10.1088/1674-1056/ab942c
  18. 18. Kiraly, B., Liu, X., Wang, L., Zhang, Zh., Mannix, A.J., Fisher, B.L., … & Guisinger, N.P. (2019). Borophene Synthesis on Au(111). ACS Nano, 13 (4), 3816–3822. DOI: 10.1021/acsnano.8b0933930844248
  19. 19. Sahoo, S.K., & Wei, K.H. (2019). A Perspective on Recent Advances in 2D Stanene Nanosheets. Advanced Materials Interfaces, 6 (18), 1900752. DOI: 10.1002/admi.201900752
  20. 20. Pica, M., & D’Amato, R. (2020). Chemistry of Phosphorene: Synthesis, Functionalization and Biomedical Applications in an Update Review. Inorganics, 8 (4), 29. DOI: 10.3390/inorganics8040029
  21. 21. Vergera, L., Xub, Ch., Natua, V., Cheng, H., Ren, W., & Barsouma, M.W. (2019). Overview of the Synthesis of MXenes and Other Ultrathin 2d Transition Metal Carbides and Nitrides. Current Opinions in Solid State and Materials Science, 23 (3), 149–163. DOI: 10.1016/j.cossms.2019.02.001
  22. 22. Meng, Zh., Stolz, R.M., Mendecki, L., & Mirica, K.A. (2019). Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 119, 478–598. DOI: 10.1021/acs.chemrev.8b00311
  23. 23. Yu, J., Meng, L., Wu, J., & Li, Y. (2019). Correlation Effect on the Electronic Properties of Pair-Checkerboard AFM Monolayer FeSe: a First-Principles Study. Journal of Phyics: Condensed Matter, 31, 305502. DOI: 10.1088/1361-648X/ab1afb
  24. 24. Koch, R.J., Konstantinova, T., Abeykoon, M., Wang, A., Petrovic, C., Zhu, Y., … & Billinge, L. (2019). Room Temperature Local Nematicity in FeSe Superconductor. Physical Review B 100, 020501. DOI: 10.1103/PhysRevB.100.020501
  25. 25. Jandke, J. Yang, F., Hlobil, P., Engelhardt, T., Rau, D., Zakeri, K., … & Wulfhekel, W. (2019). Unconventional Pairing in Single FeSe Layers. Physical Review B 100, 020503(R). DOI: 10.1103/PhysRevB.100.020503
  26. 26. Coh, S., Cohen, M.L., & Louie, S.G. (2015). Large Electron–Phonon Interactions from FeSe Phonons in a Monolayer. New Journal of Physics, 17, 073027. DOI: 10.1088/1367-2630/17/7/073027.
  27. 27. Sergeyev, D. (2020) Single Electron Transistor Based on Endohedral Metallofullerenes Me@C60 (Me = Li, Na, K). Journal of Nano and Electronic Physics, 12 (3), 03017. DOI: 10.21272/jnep.12(3).03017
  28. 28. Sergeyev, D.M. (2020). Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center, Technical Physics, 15 (4), 573–577. DOI: 10.1134/S1063784220040180
  29. 29. Sergeyev, D.M., Myasnikova, L.N., & Shunkeyev, K.Sh. (2020). Computer Simulation of Spin Filtration Properties of Zigzag-Edged Octagraphene Nanoribbon Saturated with Hydrogen Atoms. Russian Physics Journal, 63, 303–310. DOI: 10.1007/s11182-020-02036-0
  30. 30. Atomistix ToolKit. Manual Version. (2015). QuantumWise A/S, 1, 840.
  31. 31. Ryczko, K., Strubbe, D.A., & Tamblyn, I. (2019). Deep Learning and Density-Functional Theory. Physical Review A, 100, 022512. DOI: 10.1103/PhysRevA.100.022512
  32. 32. Sergeyev, D. (2019). Computer Simulation of the Electrotransport Characteristics of the “Au – Bipyridine – Au” Nanocontact. Journal of Nano and Electronic Physics, 11 (4), 04023 DOI: 10.21272/jnep.11(4).04023
  33. 33. Gurvitz, S. (2019). Generalized Landauer Formula for Time-Dependent Potentials and Noise-Induced Zero-Bias DC Current. Journal of Physics A: Mathematical and Theoretical, 52, 175301. DOI: 10.1088/1751-8121/ab10ed
  34. 34. Esmaeili, M., Jafari, M., & Sanaeepur, M. (2020). Negative Differential Resistance in Nanoscale Heterostructures Based on Zigzag Graphene Nanoribbons Anti-Symmetrically Decorated with BN. Superlattices Microstructures, 145, 106584. DOI: 10.1016/j.spmi.2020.106584
DOI: https://doi.org/10.2478/lpts-2020-0029 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 11
Published on: Dec 16, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 D. Sergeyev, N. Zhanturina, L. Myasnikova, A.I. Popov, A. Duisenova, A. Istlyaup, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.