Have a personal or library account? Click to login
The Effects of Natural Paint on the Moisture Buffering Ability of Paper Plaster Cover

The Effects of Natural Paint on the Moisture Buffering Ability of Paper Plaster

By: N. Nutt,  A. Kubjas,  L. Nei and  A. Ruus  
Open Access
|Oct 2020

References

  1. 1. Minke, G. (2006). Building with earth: Design and technology of a sustainable architecture. Basel: Birkhäuser.
  2. 2. Mazhoud, B., Collet, F., Pretot, S., & Chamoin, J. (2016). Hygric and Thermal Properties of Hemp-Lime Plasters. Build Environment, 96, 206–216.10.1016/j.buildenv.2015.11.013
  3. 3. Rode, C. (2005). Moisture buffering of building materials. BYG DTU126 Report. Department of Civil Engineering, Technical University of Denmark, Kongens Lyngby.
  4. 4. Svennberg, K. (2006). Moisture Buffering in the Indoor Environment. PhD Thesis. Lund: Lund University.
  5. 5. Zhang, M., Qin, M., & Chen, Z. (2017). Moisture Buffer Effect and Its Impact on Indoor Environment. Procedia Engineering, 205, 1123–1129. DOI: 10.1016/j.proeng.2017.10.41710.1016/j.proeng.2017.10.417
  6. 6. Teearu, M.-L. (2018). Paberkrohvi niiskustehniliste omaduste määramine: sorptsioon, veeauru läbilaskvus ning niiskuspuhverdusvõime [Determinantion of Hygrothermal Performance of Paper Clay: Sorption, Water Vapour Permeability and Moisture Buffering]. Master’s Thesis. Tallinn: Tallinn University of Technology. (In Estonian)
  7. 7. Nutt, N., Kubjas, A., & Nei, L. (2020). Adding Waste Paper to Clay Plaster to Raise Its Ability to Buffer Moisture. Proceedings of the Estonian Academy of Sciences, 69 (3), 179–185. DOI: 10.3176/proc.2020.3.0110.3176/proc.2020.3.01
  8. 8. Nutt, N., & Kubjas, A. (2020). Moisture Buffer Value of Composite Material Made of Clay-Sand Plaster and Wastepaper. Journal of Sustainable Architecture and Civil Engineering, 2 (26).10.5755/j01.sace.27.2.25391
  9. 9. Soolepp, M., Ruus, A., Nutt, N., Raamets, J., & Kubjas, A. (2020). Hygrothermal performance of paper plaster: influence of different types of paper and production methods on moisture buffering. E3S Web Conf., 172. 2020 12th Nordic Symposium on Building Physics (NSB 2020) https://doi.org/10.1051/e3sconf/20201721401010.1051/e3sconf/202017214010
  10. 10. Vares, O., Ruus, A., Raamets, J., & Tungel, E. (2017). Determination of Hygrothermal Performance of Clay Sand Plaster: Influence of Covering on Sorption and Water Vapour Permeability. Energy Procedia, 132, 267–272. DOI: 10.1016/j.egypro.2017.09.71910.1016/j.egypro.2017.09.719
  11. 11. Soosaar, H. (2017). Pinnakatte mõju savikrohvi hügroskoopsusele ja veeauru läbilaskvusele [Influence of Finishing on Clay Plaster Hygroscopicity and Water Vapour Permeability]. Master’s Thesis. Tallinn: Tallinn University of Technology. (In Estonian)
  12. 12. Ruus, A., Peetsalu, P., Tohvri, E., Lepasaar, T., Kirtsi, K., Muoni, H. … & Kabanen, T. (2011). Water Vapour Transmission Properties of Natural Paints. Agronomy Research, 9 (Biosystem Engineering Special Issue 1), 197–201.
  13. 13. Ramos, N.M.M., & Freitas, V.P. (2008). Laboratory testing for daily hygroscopic inertia assessment. In 8th Symposium on Building Physics in the Nordic Countries, 16–18 June 2008 (pp. 809–916). Copenhagen, Denmark: Technical University of Denmark.
  14. 14. Ramos, N. M. M., Delgado, J. M. P. Q. & Freitas, V. P. (2010). Influence of Finishing Coatings on Hygroscopic Moisture Buffering in Building Elements. Construction and Building Materials, 24, 2590–2597.10.1016/j.conbuildmat.2010.05.017
  15. 15. Altmäe, E., Ruus, A., Raamets, J., & Tungel, E. (2019). Determination of Clay-Sand Plaster Hygrothermal Performance: Influence of Different Types of Clays on Sorption and Water Vapour Permeability. In the 9th International Cold Climate Conference: Sustainable New and Renovated Buildings in Cold Climates, 12–15 March 2018 (pp. 945−955). Kiruna, Sweden: Lund University. DOI: 10.1007/978-3-030-00662-4_8010.1007/978-3-030-00662-4_80
  16. 16. Janssen, H., & Roels, S. (2009). Qualitative and Quantitative Assessment of Interior Moisture Buffering by Enclosures. Energy and Buildings, 41 (4), 382–394. DOI: 10.1016/j.enbuild.2008.11.00710.1016/j.enbuild.2008.11.007
  17. 17. Pere, R., & Elvisto, T. (2009). Looduslikud värvid ehituses [Natural paints in construction] Tallinn: Ajakirjade kirjastus. (In Estonian)
  18. 18. EVS-EN ISO 12571:2013 Hygrothermal performance of building materials and products – Determination of hygroscopic sorption properties.
  19. 19. EVS-EN ISO 12572:2016 Hygrothermal performance of building materials and products – Determination of water vapour transmission properties – Cup method.
DOI: https://doi.org/10.2478/lpts-2020-0027 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 51 - 60
Published on: Oct 8, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 N. Nutt, A. Kubjas, L. Nei, A. Ruus, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.