Have a personal or library account? Click to login
Choice of Parameters for the Electrodrive Diagnostic System of Hybrid Vehicle Traction Cover

Choice of Parameters for the Electrodrive Diagnostic System of Hybrid Vehicle Traction

Open Access
|Aug 2020

References

  1. 1. Arhun, S., Hnatov, A., Dziubenko, O, & Ponikarovska, S. (2019). A Device for Converting Kinetic Energy of Press into Electric Power as a Means of Energy Saving. J. Korean Soc. Precis. Eng., 36 (1), 105–110.10.7736/KSPE.2019.36.1.105
  2. 2. Patļins, A., Arhun, S., Hnatov, A., Dziubenko, O., & Ponikarovska, S. (2018). Determination of the Best Load Parameters for Productive Operation of PV Panels of Series FS-100M and FS-110P for Sustainable Energy Efficient Road Pavement. In 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON 2018): Conference Proceedings (pp. 1–6), 12–13 November 2018, Riga, Latvia.
  3. 3. Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric Buses: A Review of Alternative Powertrains. Renew. Sustain. Energy Rev., 62, 673–684.10.1016/j.rser.2016.05.019
  4. 4. Patļins, A., & Kuņicina, N. (2015). The new approach for passenger counting in public transport systems. In: Proceedings of the 2015 IEEE 8th International Acquisition and Advanced Computing Systems: Technology (pp. 53–57), 24–26 September, 2015. Warsaw: IDAAC 2015. ISBN 978-1-4673-8359-2.
  5. 5. Patļins, A., & Kuņicina, N. (2014). The Use of remote sensing technology dynamics study and analysis. In: Transport Means 2014: International Conference (pp. 63–66), 23–24 October 2014, Lithuania, Kaunas. ISSN 2351-4604.
  6. 6. Patļins, A., & Kuņicina, N. (2015). Real-time data collection and easy passenger counting method for public transport system In: Transport Means 2015: Proceedings of the Conference (pp. 329–332), 22–23 October, 2015, Lithuania, Kaunas, ISSN 1822-296X.
  7. 7. Dvadnenko, V., Arhun, S., Bogajevskiy, A., & Ponikarovska, S. (2018). Improvement of economic and Ecological Characteristics of a Car with a Start-Stop System. Int. J. Electr. Hybrid Veh., 10 (3), 209–222.10.1504/IJEHV.2018.097377
  8. 8. Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of Different Hybrid Vehicle Architectures. IFAC-Pap., 51 (9), 218–222.10.1016/j.ifacol.2018.07.036
  9. 9. Gunji, D., & Fujimoto, H. (2013). Efficiency Analysis of Powertrain with Toroidal Continuously Variable Transmission for Electric Vehicles. In: IECON Proceedings (Industrial Electronics Conference), (pp. 6614–6619).
  10. 10. Migal, V., Arhun, Shch., Hnatov, A., Dvadnenko, V., & Ponikarovska, S. (2019). Substantiating the Criteria for Assessing the Quality of Asynchronous Traction Electric Motors in Electric Vehicles and Hybrid Cars. J. Korean Soc. Precis. Eng., 10 (36), 989–999.10.7736/KSPE.2019.36.10.989
  11. 11. Xie, S., He, H., & Peng, J. (2017). An Energy Management Strategy Based on Stochastic Model Predictive Control for Plug-in Hybrid Electric Buses. Appl. Energy, 196, 279–288.10.1016/j.apenergy.2016.12.112
  12. 12. Onat, N. C., Kucukvar, M., & Tatari, O. (2015). Conventional, Hybrid, Plug-in Hybrid or Electric Vehicles? State-Based Comparative Carbon and Energy Footprint Analysis in the United States. Appl. Energy, 150, 36–49.10.1016/j.apenergy.2015.04.001
  13. 13. Huang, Y., Surawski, N. C., Organ, B., Zhou, J. L., Tang, O. H., & Chan, E. F. (2019). Fuel Consumption and Emissions Performance under Real Driving: Comparison between Hybrid and Conventional Vehicles. Sci. Total Environ., 659, 275–282.10.1016/j.scitotenv.2018.12.34930599346
  14. 14. Ak, N., & Demirbas, A. (2016). Promising Sources of Energy in the Near Future. Energy Sources Part Recovery Util. Environ. Eff., 38 (12), 1730–1738.10.1080/15567036.2014.966179
  15. 15. Borodenko, Yu. N., & Cherevach, A. V. (2012). “Kontseptsiia diahnostyky elektropryvoda hibrydnoho avtomobilia,” [Hybrid Car Electric Drive Diagnostics Concept]. Automobile Transport, 30.
  16. 16. Apse-Apsītis, P., Avotiņš, A., & Ribickis, L. (2014). Different approaches consumption monitoring. In: Proceedings of the 16th Eur Electronics and Applications (pp. 1–5), 26 February 2014, Finland, Lappeenranta. Available at: doi:10.1109/EPE.2014.691
  17. 17. Deuse, J., Grenard, S., Karoui, K., Samuelsson, O., Gertm Sauhats, A., Ribickis, L., .... & Hager, M. (2006). Sollerkvist Dispersed energy resources with power system in Norma. In: The 41st CIGRE Session: Proceedings (pp. 1–12), 22 February 2006, France, Paris. ISBN 9782858730216.
  18. 18. Apse-Apsītis, P., Avotiņš, A., & Ribickis, L. (2013). Self-tuning CoreConverter for Powering Loads on Rotating Shafts. Electron 2013, 19 (2), 41–44. e-ISSN 2029-5731. ISSN 1 doi:10.5755/j01. eee.19.2.3466
  19. 19. Malafeev, S. I., & Novgorodov, A. A. (2016). Design and Implementation of Electric Drives and Сontrol Systems for Mining Excavators. Russ. Electr. Eng., 87 (10), 560–565.10.3103/S1068371216100035
  20. 20. Ishkova, I., & Vítek, O. (2015). Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis. In: 2015 16th International Scientific Conference on Electric Power Engineering (EPE), (pp. 682–686), 20–22 May 2015, Czech Republic.
  21. 21. Verucchi, C., Bossio, J., Bossio, G., & Acosta, G. (2016). Misalignment Detection in Induction Motors with Flexible Coupling by Means of Estimated Torque Analysis and MCSA. Mech. Syst. Signal Process., 80, 570–581.10.1016/j.ymssp.2016.04.035
  22. 22. Gan, C., Wu, J., Yang, S., Hu, Y., Cao, W., & Si, J. (2016). Fault Diagnosis Scheme for Open-Circuit Faults in Switched Reluctance Motor Drives Using Fast Fourier Transform Algorithm with Bus Current Detection. IET Power Electron., 9 (1), 20–30.10.1049/iet-pel.2014.0945
  23. 23. Chekalin, V. G. (2011). Diagnosis and adjustment of automated electric drives, Uchebnoe posobie dlya VTUZov. Dushanbe: TTU im. M. Osimi.
  24. 24. Dąbrowski, Z., & Dziurdź, J. (2016). Simultaneous Analysis of Noise and Vibration of Machines in Vibroacoustic Diagnostics. Arch. Acoust., 41 (4), 783–789.10.1515/aoa-2016-0075
  25. 25. Boniecki, R., & Miciak, M. (2018). The Decision Making Process of a State Technical Facilities Based on Rough Set and Vibroacoustic Estimates. MATEC Web of Conferences 2018, 182, 02016.10.1051/matecconf/201818202016
  26. 26. Glowacz, A., & Glowacz, Z. (2017). Diagnosis of Stator Faults of the Single-Phase Induction Motor Using Acoustic Signals. Appl. Acoust., 117, 20–27.10.1016/j.apacoust.2016.10.012
  27. 27. Borodenko, Y., Ribickis, L., Zabasta, A., Arhun, Shch., Kunicina, N., Hnatova, H.,... & Kunicins, K. Using the Method of the Spectral Analysis in Diagnostics of Electrical Process of Propulsion Systems Power Supply in Electric Car. unpublished.
  28. 28. Fedotovs, J., Žiravecka, A., Bunina, I. (2019). Testing of Technical Indicators of Accumulators by Means of Complex Computer Model of EV. Electrical, Control and Communication Engineering, Riga, Latvia – submitted for publication.
DOI: https://doi.org/10.2478/lpts-2020-0017 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 11
Published on: Aug 10, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 S. Arhun, Yu. Borodenko, A. Hnatov, A. Popova, H. Hnatova, N. Kunicina, A. Ziravecka, A. Zabasta, L. Ribickis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.