Have a personal or library account? Click to login
Electrochemical Detection of Small Volumes of Glyphosate with Mass-Produced Non-Modified Gold Chips Cover

Electrochemical Detection of Small Volumes of Glyphosate with Mass-Produced Non-Modified Gold Chips

Open Access
|May 2020

References

  1. 1. Stephen, D. O., & Stephen, P. B. (2008). Glyphosate: A Once-in-a-Century herbicide. Society of Chemical Industry. doi:10.1002/ps.151810.1002/ps.151818273882
  2. 2. Linglee, H., Wenchen, K., Hsienchi, C., Jonghuang, J., & Miintsai, L. (2000). Clinical Presentations and Prognostic Factors of a Glyphosate–Surfactant Herbicide Intoxication: A Review of 131 Cases. Academic Emergency Medicine, 7(8), 906–910. doi:10.1111/j.1553-2712.2000.tb02069.x10.1111/j.1553-2712.2000.tb02069.x10958131
  3. 3. Roberts, D. M., Buckley, N. A., & Mohamed, F. (201). Acute Self-Poisoning with Glyphosate Herbicide: A Prospective Observational Study of the Clinical Toxicology of Glyphosate-Containing Herbicides in Adults with Acute Self-Poisoning. Clinical Toxicology, 48, 129–136. doi:10.3109/1556365090347649110.3109/15563650903476491287511320136481
  4. 4. Shim, Y. K., Steven, M. P., & Wijngaarden, E. (2009). Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study. Environmental Health Perspectives, 117(6), 1002–1006. doi:10.1289/ehp.080020910.1289/ehp.0800209270239419590697
  5. 5. Simonetti, E., Cartaud, G., Quinn, R. M., & Dinelli, I. M. (2015). An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour. Journal of AOAC International, 98 (6), 1760–1768. doi:10.5740/jaoacint.15-02410.5740/jaoacint.15-02426651590
  6. 6. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. doi:10.3762/bjnano.9.22710.3762/bjnano.9.227614272730254837
  7. 7. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 23. doi:10.1016/j.sbsr.2019.10027610.1016/j.sbsr.2019.100276
  8. 8. Valle, A. L. (2018). Glyphosate Detection: Methods, Needs and Challenges. Environmental Chemistry Letters. doi:10.1007/s10311-018-0789-510.1007/s10311-018-0789-5
  9. 9. Aguirre, M. C., Urreta, S. E., & Gomez, C. G. (2018). A Cu2+-Cu/Glassy Carbon System for Glyphosate Determination. Sensors and Actuators B: Chemical, 284, 675–683. doi:10.1016/j.snb.2018.12.12410.1016/j.snb.2018.12.124
  10. 10. Moraes, F., Mascaro, L., Machado, S., & Brett, C. (2010). Direct Electrochemical Determination of Glyphosate at Copper Phthalocyanine/Multiwalled Carbon Nanotube Film Electrodes. Electroanalysis, 22 (14), 1586–1591. doi:10.1002/elan.20090061410.1002/elan.200900614
  11. 11. Pintado, S., Amaro, R. R., Mayén, M., & Mellado, J. M. (2012). Electrochemical Determination of the Glyphosate Metabolite Aminomethylphosphonic Acid (AMPA) in Drinking Waters with an Electrodeposited Copper Electrode. International Journal of Eelectrochemical Science, 7, 305–312.10.1016/S1452-3981(23)13339-6
  12. 12. Coutinho, C., Silva, M., Machado, S., & Mazo, L. (2007). Influence of Glyphosate on the Copper Dissolution in Phosphate Buffer. Applied Surface Science, 253, 3270–3275. doi:10.1016/j.apsusc.2006.07.02010.1016/j.apsusc.2006.07.020
  13. 13. Coutinho, C., Silva, M., Calegaro, M., Machado, S., & Mazo, L. (2007). Investigation of Copper Dissolution in the Presence of Glyphosate Using Hydrodynamic Voltammetry and Chronoamperometry. Solid State Ionics, 178, 161–164. doi:10.1016/j.ssi.2006.10.02710.1016/j.ssi.2006.10.027
  14. 14. Kokina, I., Jahundoviča, I., Mickeviča, I., Sledevskis, E., Ogurcovs, A., & Polyakov, B. (2015). The Impact of CdS Nanoparticles on Ploidy and DNA Damage of Rucola (Eruca sativa Mill.) Plants. Journal of Nanomaterials. Article ID 470250. doi:10.1155/2015/47025010.1155/2015/470250
  15. 15. Moreno-Olivas, F., Jr., V. U. Gant Jr., Johnson, K. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Random Amplified Polymorphic DNA Reveals that TiO2 Nanoparticles are Genotoxic to Cucurbita Pepo. Journal of Zhejiang University: Science A, 15, 618–623. doi:10.1631/jzus.A140015910.1631/jzus.A1400159
  16. 16. Bhaduri, A. M., & Fulekar, M. H. (2015). Biochemical and RAPD Analysis of Hibiscus rosa sinensis Induced by Heavy Metals. Soil and Sediment Contamination: An International Journal, 411–422. doi:10.1080/15320383.2015.97068310.1080/15320383.2015.970683
  17. 17. Sorrentino, M. C., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Genotoxic Effect of Pb and Cd on in Vitro Cultures of Sphagnum Palustre: An Evaluation by ISSR Markers. Chemosphere, 208–215. doi:10.1016/j.chemosphere.2017.04.06510.1016/j.chemosphere.2017.04.06528441611
  18. 18. Pandey, C., & Gupta, M. (2015). Selenium and Auxin Mitigates Arsenic Stress in Rice (Oryza sativa L.) by Combining the Role of Stress Indicators, Modulators and Genotoxicity Assay. Journal of Hazardous Materials, 384–391. doi:10.1016/j.jhazmat.2015.01.04410.1016/j.jhazmat.2015.01.04425677475
  19. 19. Nardemir, G., Agar, G., Arslan, E., & Erturk, F. A. (2015). Determination of Genetic and Epigenetic Effects of Glyphosate on Triticum Aestivum with RAPD and CRED-RA Techniques. Theoretical and Experimental Plant Physiology, 131–139. doi:10.1007/s40626-015-0039-110.1007/s40626-015-0039-1
  20. 20. Silprasit, K., Ngamniyom, A., Kerksakul, P., & Thumajitsakul, S. (2016). Using Morphology and Genomic Template Stability (GTS) to Track Herbicide Effect on Some Submersed Aquatic Plants. Applied Environmental Research, 75–85. doi:10.35762/AER.2016.38.1.710.35762/AER.2016.38.1.7
  21. 21. Ackova, D. G., Kadifkova-Panovska, T., Andonovska, K. B., & Stafilov, T. (2016). Evaluation of GENOTOXIC VARIATIONS in PLANT MODEL SYSTEMS in a CASE of METAL STRESSORS. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 340–349. doi:10.1080/03601234.2015.112874710.1080/03601234.2015.112874726853058
  22. 22. Venkatachalam, P., Jayalakshmi, N., & Geetha, N. (2017). Accumulation Efficiency, Genotoxicity and Antioxidant Defense Mechanisms in Medicinal Plant Acalypha Indica L. under Lead Stress. Chemosphere, 544–553. doi:10.1016/j.chemosphere.2016.12.09210.1016/j.chemosphere.2016.12.09228039833
DOI: https://doi.org/10.2478/lpts-2020-0013 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 32 - 39
Published on: May 11, 2020
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 V. Mizers, V. Gerbreders, E. Sledevskis, I. Kokina, E. Tamanis, M. Krasovska, I. Mihailova, A. Orugcovs, A. Bulanovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.