Have a personal or library account? Click to login
Synergy Between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (Problem Statement) Cover

Synergy Between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (Problem Statement)

By: J. Savickis,  N. Zeltins and  L. Jansons  
Open Access
|Dec 2019

References

  1. 1. Global Energy Statistical Yearbook. (2019). [Online]. [Accessed: 10 July 2019] https://yearbook.enerdata.net/
  2. 2. European Environment Agency. (2018). Share of Renewable Energy in Gross Final Energy Consumption. [Online]. [Accessed: 7 July 2019] https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energy-consumption-4/assessment-3
  3. 3. Natural gas supply statistics. (2018). [Online]. [Accessed: 8 July 2019] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_supply_statistics---amp---oldid=401136
  4. 4. Savickis, J., Zeltins, N., Kalvītis, A., ---amp--- Ščerbickis, I. (2018). Natural Gas Development Prospects in the World, Europe, in the Baltic and Latvia. Energy and World Special Edition (dedicated to the 4th World Latvian Scientists’ Congress), June 2018, Riga.
  5. 5. Verdolini, E., Vona, F., ---amp--- Popp, D. (2018). Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion? Energy Policy, 116, 242–256.10.1016/j.enpol.2018.01.058
  6. 6. Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure Text with EEA relevance. [Online]. [Accessed: 31 July 2019] https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32014L0094
  7. 7. D’hont, L. (2018). EU Energy Union: Old Wine in New Bottles?. Master’s Thesis, Ghent University. [Online]. [Accessed: 30 July 2019] https://lib.ugent.be/fulltxt/RUG01/002/480/358/RUG01-002480358_2018_0001_AC.pdf
  8. 8. Wyns, T., Khatchadourian, A., ---amp--- Oberthür, S. (2014). EU Governance of Renewable Energy Post 2020 – Risks and Options. A Report for Heinrich Boll-Stiftung European Union. Institute for European Studies, Vrije Universiteit Brussel. [Online]. [Accessed: 22 July 2019] https://www.ies.be/files/eu_renewable_energy_governance_post_2020.pdf
  9. 9. 2030 Energy Strategy. [Online]. [Accessed: 31 July 2019] https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy
  10. 10. National Energy and Climate Plans (NECPs). (n.d.). [Online]. [Accessed: 31 July 2019] https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/governance-energy-union/national-energy-climate-plans
  11. 11. Energy Union. (n.d.). [Online]. [Accessed: 30 July 2019] https://www.eceee.org/policy-areas/energy-union/
  12. 12. European Federation for Transport and Environment. (2018). CNG and LNG for Vehicles and Ships – The Facts. [Online]. [Accessed: 30 July 2019] https://www.transportenvironment.org/sites/te/files/publications/2018_10_TE_CNG_and_LNG_for_vehicles_and_ships_the_facts_EN.pdf
  13. 13. Sinn, H. (2016). Buffering Volatility: A Study on the Limits of Germany’s Energy Revolution. CESIFO Working Paper No.5950.10.3386/w22467
  14. 14. Verfonder, K. (ed.) (2007). Nuclear Energy for Hydrogen Production. Schriften des Forschungszentrum Jülich Reihe Energietechnik, 58.
  15. 15. GE Energy. (2008). Analysis of Wind Generation Impact on ERCOT Ancillary Services Requirements. [Online]. [Accessed: 20 July 2019] https://www.nrc.gov/docs/ML0914/ML091420464.pdf
  16. 16. Gaso. (2018). Summary on visit to Estonian CNG filling Stations (05.03.2018).
  17. 17. Mathiesen, P., ---amp--- Kleissl, J. (2011). Evaluation of Numerical Weather Prediction for Intra-Day Solar Forecasting in the Continental United States. Energy 85, 967–77.10.1016/j.solener.2011.02.013
  18. 18. Lithuanian Wind Power Association. (n.d.). [Online]. [Accessed: 30 July 2019] https://lvea.lt/en/statistics/lithuanian-statistics/
  19. 19. Estonian Wind Power Association. (n.d.). [Online]. [Accessed: 30 July 2019] http://www.tuuleenergia.ee/en/windpower-101/statistics-of-estonia/
  20. 20. Litgrid, AST, Elering. (2015). Review of RES Perspective in Baltic Countries till 2030. [Online]. [Accessed: 30 July 2019] https://elering.ee/sites/default/files/attachments/Review_of_RES_perspective_in_Baltic_countries_till_2030.pdf
  21. 21. Nacionālais enerģētikas un klimata plāns (Nacionālā enerģētikas un klimata plāna aktualizētā versija (PROJEKTS)). (n.d.). [Online]. [Accessed: 30 July 2019] https://em.gov.lv/lv/nozares_politika/nacionalais_energetikas_un_klimata_plans/
  22. 22. Latvenergo (Generation). (n.d.). [Online]. [Accessed: 15 July 2019] https://www.latvenergo.lv/eng/about_us/generation/
  23. 23. IPCC. Climate Change. (2014). Mitigation of climate change. Cambridge: Cambridge University Press.
  24. 24. Combustion Engine vs. Gas Turbine: Pulse Load Efficiency and Profitability. (n.d.). [Online]. [Accessed: 31 July 2019] https://www.wartsila.com/energy/learn-more/technical-comparisons/combustion-engine-vs-gas-turbine-pulse-load-efficiency-and-profitability
  25. 25. Kuņickis, M., Balodis, M., Linkevičs, O., ---amp--- Ivanova, P. (2015). Flexibility Options of Riga CHP-2 Plant Operation under Conditions of Open Electricity Market. In 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), (pp. 548–553). 11–13 May 2015, Latvia, Riga, Riga Technical University.10.1109/PowerEng.2015.7266375
  26. 26. CDF. (n.d.). CCGT: Improving the Environmental Performance of Fossil-fired Power Plants. Online]. [Accessed: 18 July 2019] https://www.edf.fr/en/edf/combined-cycle-gas-turbine-power-plants
  27. 27. Ivanova, P., Sauhats, A., ---amp--- Linkevics, O. (2016). Towards Optimization of Combined Cycle Power Plants’ Start-Ups and Shut-Down. In IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 7–10 June 2016, Florence, Italy.10.1109/RTUCON.2016.7763081
  28. 28. Hokerts, J. (2019). Saspiestās un sašķidrinātās dabasgāzes ienākšana Latvijas tirgū – izaicinājumi un iespējas (presentation). In Conf. Enerģētikas nozares nākotne – iespējas un izaicinājumi. 7 March 2019, Riga.
  29. 29. Niedrite, I., Kreslins, A., Davis, A., ---amp--- Zeltins, N. (2013). Security of Gas Supply Risk Assessment Alternatives. In Proceedings of the 22th World Energy Congress, 820(14). 17 October 2013, Daegu, Korea.
  30. 30. Jansons, L., Zeltins, N., ---amp--- Savickis, J. (2016). The Latvian UGS Potential and Alternative Use of Underground Geological Structures. In e_Proceeding of the 23rd World Energy Congress. 9–13 October 2016, Istanbul. ISBN: 978-605-89548-9-2
  31. 31. Rogulska, M., Bukrejewski, P., ---amp--- Krasuska, E. (2018). Biomethane as Transport Fuel. [Online]. [Accessed: 30 July 2019] https://www.researchgate.net/publication/326376873_Biomethane_as_Transport_Fuel10.5772/intechopen.75173
  32. 32. Kampman, B., Leguijt, C., Scholten, T., Tallat-Kelpsaite, J., ---amp--- Brückmann, R. (2016). Optimal Use of Biogas From Waste Streams. An Assessment of the Potential of Biogas from Digestion in the EU Beyond 2020. CE Delf. [Online]. [Accessed: 30 July 2019] https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_report.pdf
  33. 33. Virši-A. (n.d.). Atklāj pirmo CNG jeb saspiestās dabasgāzes staciju Latvijā. [Online]. [Accessed: 10 July 2019] https://www.virsi.lv/lv/atklaj-pirmo-cng-staciju-latvija
  34. 34. Eesti Gaas. (2019). CNG and LNG in Europe and the Baltic (presentation). In Conf. Enerģētikas nozares nākotne – izaicinājumi un iespējas. 7 March, 2019, Riga. [Online]. [Accessed: 5 June 2019] http://konferences.db.lv/conferences/energetika-2019/
  35. 35. Gaso. (2018). CNG transporta un uzpildes infrastruktūras attīstības perspektīvas (presentation).
  36. 36. Estonia: Largest CNG Filling Station Opens. (n.d.). [Online]. [Accessed: 31 July 2019] https://www.petrolplaza.com/news/22348
  37. 37. AST. (2018). Pārvades sistēmas operatora ikgadējais novērtējuma ziņojums. [Online]. [Accessed: 5 July 2019] http://www.ast.lv/sites/default/files/editor/20181001_PSO_Zinojums_2017.pdfhttps://www.ies.be/files/eu_renewable_energy_governance_post_2020.pdf
  38. 38. Zemite, L., Kutjuns, A., Bode, I., Kunickis, M., ---amp--- Zeltins, N. (2018). Consistancy Analysis and Data Consultation of Gas System of Gas – Electricty Network of Latvia. Latvian Journal of Physics and Technical Sciences, 2018(1), 22–34 (DOI: 10.2478/lpts-2018-0003)10.2478/lpts-2018-0003
DOI: https://doi.org/10.2478/lpts-2019-0032 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 17 - 31
Published on: Dec 31, 2019
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 J. Savickis, N. Zeltins, L. Jansons, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.