Have a personal or library account? Click to login
Challenges and Barriers by Transition Towards 4th Generation District Heating System: A Strategy to Establish a Pricing Mechanism Cover

Challenges and Barriers by Transition Towards 4th Generation District Heating System: A Strategy to Establish a Pricing Mechanism

By: U. Osis,  N. Talcis and  J. Ziemele  
Open Access
|Sep 2019

References

  1. 1. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J., Hvelplund, F., & Mathiesen, B.V. (2014). 4th generation district heating (4GDH) integrating smart thermal grids into future sustainable energy systems. Energy, 68, 1–11, DOI: 10.1016/j.energy.2014.02.089.10.1016/j.energy.2014.02.089
  2. 2. Pieper, H., Ommen, T., Elmegaard, B., & Markussen, W.B. (2019). Assessment of a combination of three heat sources for heat pumps to supply district heating. Energy, 176, 156–170, DOI: 10.1016/j.energy.2019.03.165.10.1016/j.energy.2019.03.165
  3. 3. Hammer, A., Sejkora, C., & Kienberger, T. (2018). Increasing district heating networks efficiency by means of temperature-flexible operation. Sustainable Energy, Grids and Networks, 16, 393–404, DOI: 10.1016/j.segan.2018.11.001.10.1016/j.segan.2018.11.001
  4. 4. Werner, S. (2017). International review of district heating and cooling. Energy, 137, 617–631, DOI: 10.1016/j.energy.2017.04.045.10.1016/j.energy.2017.04.045
  5. 5. European Commission (2008). 3 Communication from the Commission to European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – 20 20 by 2020: Europe’s climate change opportunity. European Commission,COM(2008),30 Final, 1–12.
  6. 6. Eurostat (n.d.). Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energyconsumption_in_households#cite_note-1.
  7. 7. Lund, H., Østergaard, P., Connolly, D., & Mathiesen, B.V. (2017). Smart energy and smart energy systems. Energy, 1–10, DOI: 10.1016/j.energy.2017.05.123.10.1016/j.energy.2017.05.123
  8. 8. European Parlament (2009). Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC. Official Journal of the European Union, L 211/55, 55–93.
  9. 9. European Comission (2016). An EU Strategy on Heating and Cooling. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2016), 51 Final, 1–13.
  10. 10. Eurostat (2018). Energy balance sheets. 2016 data. Eurostat, 1–116.
  11. 11. Rehman, H., Hirvonen, J., & Sirén, K. (2018). Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system. Applied Energy, 229, 1072–1094, DOI: 10.1016/j.apenergy.2018.08.064.10.1016/j.apenergy.2018.08.064
  12. 12. Renaldi, R., & Friedrich, D. (2019). Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Energy Policy, 236, 388–400, DOI: 10.1016/j.apenergy.2018.11.030.10.1016/j.apenergy.2018.11.030
  13. 13. Pacot, P., & Reuter, S. (2011). Quality indicators for district heating networks. Available at: http://hdl.handle.net/2268/96467.
  14. 14. Iddrisu I., & Bhattacharyya, S. (2015). Sustainable energy development index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530, DOI: 10.1016/j.rser.2015.05.032.10.1016/j.rser.2015.05.032
  15. 15. Romanchenko, D., Odenberger, M., Göransson, L., & Johnsson F. (2017). Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden. Applied Energy, 204, 16–30, DOI: 10.1016/j.apenergy.2017.06.092.10.1016/j.apenergy.2017.06.092
  16. 16. Ziemele, J., Vigants, G., Vitolins, V., Blumberga, D., & Veidenbergs, I. (2014A). District heating systems performance analyses. heat energy tariff. Environmental and Climate Technologies, 13, 32–43, DOI: 10.2478/rtuect-2014-0005.10.2478/rtuect-2014-0005
  17. 17. Büchele, R., Kranzl, L., & Hummel, M. (2018). What is the impact of the policy framework on the future of district heating in Eastern European countries? The case of Brasov. Energy Strategy Reviews, 19, 72–75, DOI: 10.1016/j.esr.2017.12.003.10.1016/j.esr.2017.12.003
  18. 18. Koirala, B., Koliou, E., Friege, J., Hakvoort, R., & Herder, P. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722–744, DOI: 10.1016/j.rser.2015.11.080.10.1016/j.rser.2015.11.080
  19. 19. Hansen, C., Gudmundsson, O., & Detlefsen, N. (2019). Cost efficiency of district heating for low energy buildings of the future. Energy, 177, 77–86, DOI: 10.1016/j.energy.2019.04.046.10.1016/j.energy.2019.04.046
  20. 20. Turski, M., & Sekret, R., (2018). Buildings and a district heating network as thermal energy storages in the district heating system. Energy & Buildings, 179, 49–56, doi.org/10.1016/j.enbuild.2018.09.015.10.1016/j.enbuild.2018.09.015
  21. 21. Zhang, J., Ge, B., & Xu, H. (2013). An equivalent marginal cost-pricing model for the district heating market. Energy Policy, 63, 1224–1232, DOI: 10.1016/j.enpol.2013.09.017.10.1016/j.enpol.2013.09.017
  22. 22. Public Utilities Commission of Latvia (2010). Methodology for the Calculation of Thermal Energy Supply Service Tariffs. Decision No. 1/7 of the Board of the Public Utilities Commission.
  23. 23. Central Statistical Bureau (2019). Available at: http://data1.csb.gov.lv/pxweb/lv/vide/vide__energetika__ikgad/?tablelist=true
  24. 24. Tol, H.I., & Svendsen, S. (2015). Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe, Danmark. Energy and Buildings, 88, 324–334, DOI: 10.1016/j.enbuild.2014.10.067.10.1016/j.enbuild.2014.10.067
  25. 25. Dalla Rosa, A., & Christensen, J. (2011). Low-energy district heating in energy-efficient building areas. Energy, 36, 6890–6899, DOI: 10.1016/j.energy.2011.10.001.10.1016/j.energy.2011.10.001
  26. 26. Cai, H., You, S., Wang, J., Bindner, H.W., & Klyapovskiy, S. (2018). Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy, 150, 938–949, DOI: 10.1016/j.energy.2018.02.084.10.1016/j.energy.2018.02.084
  27. 27. Dalla Rosa, A., Li, H., Svendsen, S., Werner, S., Persson, U., Ruehling, K., & Felsman, C. (2014). Toward 4th generation district heating: Experince and potential of low-temperature district heating. Germany: International Energy Agency.
  28. 28. Averfalk, H., Werner, S., Felsmann, C., Rühling, K., Wiltshire, R., & Svendsen, S. (2017). Transformation roadmap from high to low temperature district heating systems. Annex XI final report. International Energy Agency.
  29. 29. Li, H., & Wang, S.J. (2014). Challenges in smart low-temperature district heating development. Energy Procedia, 61, 1472–1475, DOI: 10.1016/j.egypro.2014.12.150.10.1016/j.egypro.2014.12.150
  30. 30. Okkonen, L., & Suhonen, N. (2010). Business models of heat entrepreneurship in Finland. Energy Policy, 38, 3443–3452, DOI: 10.1016/j.enpol.2010.02.018.10.1016/j.enpol.2010.02.018
  31. 31. Prando, D., Renzi, M., Gasparella, M., Gasparella, A., & Baratieri, M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 79, 98–107, DOI: 10.1016/j.applthermaleng.2014.12.063.10.1016/j.applthermaleng.2014.12.063
  32. 32. Madlener, R. (2007). Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy, 35, 1992–2008. DOI: 10.1016/j.enpol.2006.06.010.10.1016/j.enpol.2006.06.010
  33. 33. Ilic, D., & Trygg, L. (2014). Economic and environmental benefits of converting industrial processes to district heating. Energy Conversion and Management, 87, 305–317, DOI: 10.1016/j.enconman.2014.07.025.10.1016/j.enconman.2014.07.025
  34. 34. Paiho, S., & Saastamoinen, H. (2018). How to develop district heating in Finland? Energy Policy, 122, 668–676, DOI: 10.1016/j.enpol.2018.08.025.10.1016/j.enpol.2018.08.025
  35. 35. Sarma, U., & Bazbauers, G. (2016). District heating regulation: parameters for the benchmarking model. Energy Procedia, 95, 401–407, DOI: 10.1016/j.egypro.2016.09.046.10.1016/j.egypro.2016.09.046
  36. 36. Li, H., Sun, Q., Zhang, Q., & Wallin, F. (2015). A review of the pricing mechanisms for district heating systems. Renewable and Sustainable Energy Reviews, 42, 56–65, DOI: 10.1016/j.rser.2014.10.003.10.1016/j.rser.2014.10.003
  37. 37. Köfinger, M., Basciotti, D., Schmidt, R., Meissner, E., Doczekal, C., & Giovannini, A. (2016). Low temperature district heating in Austria: Energetic, ecologic and economic comparison of four case studies. Energy, 110, 95–104, DOI: 10.1016/j.energy.2015.12.103.10.1016/j.energy.2015.12.103
  38. 38. Zvingilaite, E., & Klinge Jacobsen, H. (2015). Heat savings and generation technologies:Modelling of residential investment behaviou with local health costs. Energy Policy, 77, 31–45, DOI: 10.1016/j.enpol.2014.11.032.10.1016/j.enpol.2014.11.032
  39. 39. Dalla Rosa, A., Boulter, R., Church, K., & Svendsen, S. (2012). District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solution (SMORES) in Canada: A case study. Energy, 45, 960–974, DOI: 10.1016/j.energy.2012.06.062.10.1016/j.energy.2012.06.062
DOI: https://doi.org/10.2478/lpts-2019-0022 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 17 - 37
Published on: Sep 13, 2019
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 U. Osis, N. Talcis, J. Ziemele, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.