Have a personal or library account? Click to login
V-Function Method: Some Solutions of Direct and Inverse Dynamics Problems in A New Statement Cover

V-Function Method: Some Solutions of Direct and Inverse Dynamics Problems in A New Statement

Open Access
|Mar 2019

References

  1. 1. Heisenberg, W. (1930). Die Physikalischen Prinzipien der Quantentheorie. Leipzig: Springer.
  2. 2. Bloch, A.M., & Rojo, A.G. (2016). Optical mechanical analogy and nonlinear nonholonomic constraints. Physical Review E, 93(2), 023005. DOI: 10.1103/PhysRevE.93.02300510.1103/PhysRevE.93.02300526986403
  3. 3. Abdil’din, M.M., Abishev, M.E., Beissen, N.A., & Taukenova, A.S. (2011). On the optical-mechanical analogy in general relativity. Gravitation and Cosmology, 17(2), 143–146.10.1134/S0202289311020034
  4. 4. Khan, S.A. 2017. Hamilton’s optical-mechanical analogy in the wavelength-dependent regime. Optik - International Journal for Light and Electron Optics, 130, 714–722.10.1016/j.ijleo.2016.10.112
  5. 5. De Broglie, L. (1967). Waves and quanta. Quanta of light, diffraction and interference. Quanta, the kinetic theory of gases and the Fermat principle. Advances of Physical Sciences, 93(1), 178–180.
  6. 6. De Broglie, L. (1986). The Heisenberg uncertainty relations and the probabilistic interpretation of wave mechanics. Moscow: Mir.
  7. 7. Böhm, D. (1951). Quantum Theory. Englewood Cliffs: Prentice-Hall.
  8. 8. Knoll, Y., & Yavneh, L. (2006). Coupled wave-particle dynamics as a possible ontology behind Quantum Mechanics and long-range interactions. arXiv:quant-ph/0605011. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.252.7980&rep=rep1&type=pdf
  9. 9. Valishin, F.T. (2018). The problem of the beginning and the strategy of dynamism. Moscow: Entsiklopedist-Maksimum.
  10. 10. Valishin, N.T. (2014). Variational principle and the problems dynamics. Life Science Journal, 11(8), 568–574.
  11. 11. Valishin, N.T. (2016). An optical-mechanical analogy and the problems of the trajectory-wave dynamics. Global Journal of Pure and Applied Mathematics, 12(4), 2935–2951.
  12. 12. Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen der Physik, 384(4), 361–376.10.1002/andp.19263840404
  13. 13. Schrödinger, E. (1959). Quantization as a problem of eigenvalues. In: Variational Principles of Mechanics. Digest of Articles (pp. 668–704). Moscow: Fizmatgiz.
  14. 14. Goldin, L.L., & Novikova, G.I. (2002). Quantum physics. Introductory course. Moscow: Institute for Computer Research.
  15. 15. Syzrantsev, V.N., Chelombitko, S.I., & Gammer, M.D. (2018). The use of virtual laboratory works in the study of engineering disciplines of oil and gas training. Periódico Tchê Química, 15(30), 563–570.10.52571/PTQ.v15.n30.2018.567_Periodico30_pgs_563_569.pdf
DOI: https://doi.org/10.2478/lpts-2019-0007 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 70 - 81
Published on: Mar 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Nail T. Valishin, Fan T. Valishin, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.