Have a personal or library account? Click to login
Study of the Processes of Near Identical, Nanoprene, Neuro Progenitor Electric Drive Cover

Study of the Processes of Near Identical, Nanoprene, Neuro Progenitor Electric Drive

Open Access
|Mar 2019

References

  1. 1. Fard Masoumi, H.R., Basri, M., Kassim, A., Kuang Abdullah, D., Abdollahi, Y., & Abd Gani, S.S. (2014). Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant. J Surfactants Deterg., 17(2), 287–294. doi: 10.1007/s11743-013-1539-0.10.1007/s11743-013-1539-0
  2. 2. Mao, W., Wang, W., Dou, Z., & Li, Y. (2018). Correction to: Fire recognition based on multi-channel convolutional neural network. Fire Technol. doi: 10.1007/s10694-018-0705-3.10.1007/s10694-018-0705-3
  3. 3. Ayhan, T., Karlik, B., & Tandiroglu, A. (2008). Flow geometry optimization of channels with baffles using neural network and second law of thermodynamics. Comput Mech., 42(3), 481. doi: 10.1007/s00466-006-0083-4.10.1007/s00466-006-0083-4
  4. 4. Yamada, T. (2009). Remarks on the tracking method of neural network weight change for a learning-type neural network feed-forward feed-back controller. Artif Life Robot., 14(3), 384. doi:10.1007/s10015-009-0690-1.10.1007/s10015-009-0690-1
  5. 5. Buyankin, V.M., Vasiliev, V.V., Tikhomirov, E.L., & Tochilina, N.S. (1983). Drive control in microprocessor systems. In Microprocessor Technology in CNC Machine Tools: Sat. Scientific Papers (pp. 43–51). Moscow: ENIMS.
  6. 6. Posyagin, A.I., & Yuzhakov, A.A. (2013). Development of a two-layer neural network for a self-routing analog-to-digital converter based on a neural network. Russ Electr Eng., 84(11), 602–605. doi: 10.3103/S1068371213110114.10.3103/S1068371213110114
  7. 7. Lin, H-L., Chou, T., & Chou, C-P. (2007). Optimization of resistance spot welding process using taguchi method and a neural network. Exp Tech., 31(5), 30–36. doi:10.1111/j.1747-1567.2007.00186.x.10.1111/j.1747-1567.2007.00186.x
  8. 8. Virili, F., & Freisleben, B. (2001). Neural network model selection for financial time series prediction. Comput Stat., 16(3), 451–463. doi: 10.1007/s001800100078.10.1007/s001800100078
  9. 9. Liu, P., Shi, R., & Gao, W. (2018). Erratum to: Estimating leaf chlorophyll contents by combining multiple spectral indices with an artificial neural network. Earth Sci Informatics, 11(1), 157. doi: 10.1007/s12145-017-0325-3.10.1007/s12145-017-0325-3
  10. 10. Alkhasawneh, M.S., & Tay, L.T. (2017). A hybrid intelligent system integrating the cascade forward neural network with elman neural network. Arab J Sci Eng. doi: 10.1007/s13369-017-2833-3.10.1007/s13369-017-2833-3
  11. 11. Wang, H., Lv, Y., Chen, H., Li, Y., Zhang, Y., & Lu, Z. (2018). Erratum to: Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl., 77(3), 3887, doi: 10.1007/s11042-017-4391-9.10.1007/s11042-017-4391-9
  12. 12. Patra, J.C., Ang, E.L., Chaudhari, N.S., & Das, A. (2005). Neural-network-based smart sensor framework operating in a harsh environment. EURASIP J Adv Signal Process, 2005(4), 498294. doi:10.1155/ASP.2005.558.10.1155/ASP.2005.558
  13. 13. Shaltaf, S. (2004). Neural-network-based time-delay estimation. EURASIP J Adv Signal Process, 2004(3), 654087. doi: 10.1155/S1110865704309261.10.1155/S1110865704309261
  14. 14. Nemmour, H., & Chibani, Y. (2005). Neural network combination by fuzzy integral for robust change detection in remotely sensed imagery. EURASIP J Adv Signal Process, 2005(14), 413784, doi:10.1155/ASP.2005.2187.10.1155/ASP.2005.2187
  15. 15. Dmitriev, A.S., Emelyanov, R.Y., Lazarev, V.A., & Chibisov, V.V. (2017). Simulation of dynamics of the neural ensemble in an active wireless network. J Commun Technol Electron, 62(10), 1148–1151. doi: 10.1134/S1064226917100035.10.1134/S1064226917100035
  16. 16. Hartmann, C., Lazar, A., & Triesch, J. (2015). Key features of neural variability emerge from self-organized sequence learning in a deterministic neural network. BMC Neurosci., 16(1), 266. doi: 10.1186/1471-2202-16-S1-P266.10.1186/1471-2202-16-S1-266
  17. 17. Nugent, C.D., Lopez, J.A., Smith, A.E., & Black, N.D. (2002). Prediction models in the design of neural network based ECG classifiers: A neural network and genetic programming approach. BMC Med Inform Decis Mak., 2(1), 1. doi: 10.1186/1472-6947-2-1.10.1186/1472-6947-2-16552211846893
  18. 18. Rohit, S., & Chakravarthy, S. (2011). A convolutional neural network model of the neural responses of inferotemporal cortex to complex visual objects. BMC Neurosci., 12(1), 35. doi: 10.1186/1471-2202-12-S1-P35.10.1186/1471-2202-12-S1-35
  19. 19. Grasel, F.D.S., & Fontoura, L.A.M. (2016). Computacional study of the electronic effects in rotational barrier of the N-arilcarbamatos N-CO bond. Periodico Tche Quimica, 13(25), 7–15.10.52571/PTQ.v13.n25.2016.7_Periodico25_pgs_7_15.pdf
  20. 20. Buyankin, V.M., & Vasiliev, V.V. (1982). Digital servo drive with separate control reversing thyristor Converter. In Electric and Hydraulic Drive of CNC Machines and Industrial Robots: Sat. Scientific Papers (pp. 78–86). Moscow: ENIMS.
DOI: https://doi.org/10.2478/lpts-2019-0003 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 29 - 40
Published on: Mar 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Viktor M. Buyankin, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.